The CLOSURE property for Multiplication	For all real numbers <i>a</i> and <i>b</i> :
	<i>ab</i> is a unique real number
	$\forall a, b \in \Re, \exists ! c \in \Re; (ab = c)$
The ASSOCIATIVE property for Multiplication	For all real numbers a, b, and c:
	(ab)c = a(bc)
	$\forall a, b, c \in \mathfrak{R}; (ab)c = a(bc)$
The COMMUTATIVE property for Multiplication	For all real numbers a and b:
	ab = ba
	$\forall a, b \in \Re; ab = ba$
IDENTITY Property of Multiplication	There is a unique real number 1 such that for
	every real number a,
	$a \cdot 1 = a$ and $1 \cdot a = a$.
	$\forall a \in \Re; (a \cdot 1 = a) \land (1 \cdot a = a)$
Property of RECIPROCALS	For every non-zero real number a , there is a
	unique real number $\frac{1}{a}$ such that
	$a \cdot \frac{1}{a} = 1$ and $\frac{1}{a} \cdot a = 1$
	$\forall a \in \Re \land a \neq 0, \exists ! \frac{1}{a}; (a \cdot \frac{1}{a} = 1) \land \left(\frac{1}{a} \cdot a = 0\right)$

Properties for Multiplication

Definition of Division

Definition of Division	For all real numbers a and b , the quotient $a \div b$ is defined by
	$a \div b = a \cdot \frac{1}{b}$ for $b \neq 0$
	U U
	to multiply by b, multiply by the reciprocal of b.
	$\forall a, b \in \Re, b \neq 0; a \div b = a \cdot \frac{1}{b}$

Rule for Multiplication by -1

Theorem: Multiplication by -1	For all real numbers a:
	$-1 \cdot a = -a$
Theorem: Negative times a positive	$\forall a \in \Re; -1 \cdot a = -a$
Theorem: Negative times a negative is a	$-1 \cdot -1 = -(-1) = 1$
positive	

Rules for Multiplication and Addition
--

The DISTRIBUTIVE property	For all real numbers a, b, and c:
(of multiplication with respect to addition)	a(b+c) = ab + ac
	$\forall a, b, c \in \mathfrak{R}; a(b+c) = ab + ac$

Axioms for Multiplication Sample Quiz on Axioms for Multiplication

1. Find a solution set for 4x = 8

4x = 8	Given
$\frac{1}{4} \cdot (4x) = \frac{1}{4} \cdot 8$	
$\left(\frac{1}{4} \cdot 4\right)x = \frac{1}{4} \cdot 8$	
$1 \cdot x = \frac{1}{4} \cdot 8$	
$x = \frac{1}{4} \cdot 8$	
<i>x</i> = 2	

2. Find a solution set for $x \div 3 = 9$

$x \div 3 = 9$	Given
$x \cdot \frac{1}{3} = 9$	
$\left(x \cdot \frac{1}{3}\right) \cdot 3 = 9 \cdot 3$	
$x \cdot \left(\frac{1}{3} \cdot 3\right) = 9 \cdot 3$	
$x \cdot 1 = 9 \cdot 3$	
$x = 9 \cdot 3$	
<i>x</i> = 27	

Axioms for Multiplication

6 - x = 1	Given
6 + -x = 1	
(6+-x)+x=1+x	
$6 + \left(-x + x\right) = 1 + x$	
6 + 0 = 1 + x	
6 = 1 + x	
1 + x = 6	
x + 1 = 6	
(x+1)+-1=6+-1	
x + (1 + -1) = 6 + -1	
x + 0 = 6 + -1	
x = 6 + -1	
<i>x</i> = 5	
4. Find a solution set for	6-x=1 (Multiplicative Solution)

3. Find a solution set for 6 - x = 1 (Additive Solution)

4. Find a solution set for 6	5 - x = 1 (Multiplicative Solution)
6 - x = 1	Given
6 + -x = 1	
$6 + \left(-1 \cdot x\right) = 1$	
$-6 + (6 + (-1 \cdot x)) = -6 + 1$	
$(-6+6)+-1 \cdot x = -6+1$	
$0 + -1 \cdot x = -6 + 1$	
$-1 \cdot x = -6 + 1$	
$-1 \cdot x = -5$	
$-1 \cdot (-1 \cdot x) = -1 \cdot -5$	
$(-1 \cdot -1) \cdot x = -1 \cdot -5$	
$1 \cdot x = 5$	
<i>x</i> = 5	