Relation

A relation on the elements of a set, S, is a set of ordered pairs of those elements.

Function

A function on the elements of a set, S, is a set of ordered pairs of elements with a unique first coordinate.

• • • • • • • • • • • • • • • • • • •	
R is Reflexive on S	$\forall a \in S, aRa$
<i>R</i> is Symmetric on <i>S</i>	$\forall a, b \in S; aRb \Longrightarrow bRa$
<i>R</i> is Transitive on <i>S</i>	$\forall a, b, c \in S; aRb \land bRc \Longrightarrow aRc$
Irreflexive	$\forall a \in S; \neg(aRa)$
Antisymmetric	$\forall a \in S; aRb \land bRa \Longrightarrow a = b$

General Properties of Relations: R

Examples for reflexive

The relation \leq is reflexive on \Re . $r \leq r$ is true for every real number. The relation = is reflexive on \Re . r = r is true for every real number. The relation \subseteq is reflexive on the **power set** of any set.

Non-examples

The relation "<" is not reflexive on \Re The relation "is a sister of" is not reflexive on the set of all women.

Examples for symmetric

The empty relation is symmetric The equals relation is symmetric (i.e. $a=b \rightarrow b=a$)

Not examples

The "is a sister" relationship is **symmetric** for the set of all women **BUT** the relation is **not** symmetric for the set of all people.

Examples for antisymmetric

The empty relation is antisymmetric The < relation is antisymmetric. (Do you know the definition of $a \rightarrow b$?) The \leq relation on \Re is antisymmetric. $a \leq b \land b \leq a \Rightarrow a = b$

Warning: antisymmetric is NOT the negation of symmetry. "=" is both antisymmetric and symmetric.

Examples of Transitive

 $<,\leq,>,\geq,=$ (generally all ordering relations)

Types of Relations

Name	Properties	Examples
Order Relation	antisymmetric, transitive	
Equivalence Relation	reflexive, symmetric,	equality, congruence,
	transitive	similarity

Definition

a < b	$\forall a, b \in \Re; a < b \Leftrightarrow b - a \in \Re^+$
$a \leq b$	$a \le b \Leftrightarrow a < b \lor a = b$

Equivalence Relation

An Equivalence Relation, *R*, is a relation with the following properties: Reflexive, Symmetric and Transitive.

Reflexive	For each element in the set $a \in S$, aRa
	$\forall a \in S; aRa$
Symmetric	For all elements a and b in set, S;
	if aRb then bRa
	$\forall a, b \in S; aRb \Longrightarrow bRa$
Transitive	For elements a, b, c which are elements of set, S;
	if aRb and bRc then aRc
	$\forall a, b, c \in S; (a R b) \land (b R c) \Longrightarrow a R c$

The relation **equality** (=) and **congruence** (\cong) are equivalence relations. Equality is generally used for numbers. Congruence is generally used for <u>geometric</u> shapes The relation **similarity** (~) is not an equivalence relation.

Properties for Equality

Reflexive	For each element in the set $a \in S, a = a$
	$\forall a \in S; a = a$
Symmetric	For all elements a and b in set, S;
	if $a = b$ then $b = a$
	$\forall a, b \in S; a = b \Longrightarrow b = a$
Transitive	For elements a, b, c which are elements of set, S;
	if $a = b$ and $b = c$ then $a = c$
	$\forall a, b, c \in S; (a = b) \land (b = c) \Longrightarrow a = c$
The ADDITION property for Equality	For all elements, a,b,c, in set, <i>S</i> ,
	if $a = b$ then $a + c = b + c$.
	$\forall a, b, c \in S; a = b \Longrightarrow a + c = b + c$
The MULTIPLICATION property for Equality	For all elements, a,b,c, in set, <i>S</i> ,
	if $a = b$ then $ac = bc$
	$\forall a, b, c \in S; a = b \Longrightarrow ac = bc$