Properties for Addition

The CLOSURE property for Addition	For all real numbers a and b:
1 1 3	a+b is a unique real number
	$\forall a, b \in \Re, \exists ! c \in \Re; (a+b=c)$
The ASSOCIATIVE property for Addition	For all real numbers a, b, and c:
	(a+b)+c=a+(b+c)
	$\forall a, b, c \in \Re; (a+b) + c = a + (b+c)$
The COMMUTATIVE property for Addition	For all real numbers a and b:
The Commonant property for Addition	a+b=b+a
	$\forall a,b \in \mathfrak{R}; a+b=b+a$
IDENTITY Property of Addition	There is a unique real number 0 such that for
(0 is the Additive Identity)	every real number a,
	a + 0 = a and $0 + a = a$.
	$\forall a \in \mathfrak{R}; (a+0=a) \land (0+a=a)$
Property of OPPOSITES	For every real number a , there is a unique real
	number $-a$ such that
	a + (-a) = 0 and $(-a) + a = 0$
	$\forall a \in \mathfrak{R}, \exists !(-a); (a+(-a)=0) \land ((-a)+a=0)$

Definition of Subtraction

Definition of Subtraction	For all real numbers a and b , the difference a - b is defined by
	a - b = a + (-b)
	to subtract b, add the opposite of b.
	$\forall a,b \in \mathfrak{R}; a-b=a+(-b)$

Sample Quiz on Axioms for Addition

1. Find a solution set for x + 4 = 7

1. Time a solution set for w	. ,
x + 4 = 7	Given
(x+4)+-4=7+-4	
x + (4 + -4) = 7 + -4	
x + 0 = 7 + -4	
x = 7 + -4	
x = 3	

2. Find a solution set for x-3=7

2. Time a solution set for w	
x - 3 = 7	Given
x + -3 = 7	
(x+-3)+3=7+3	
x + (-3 + 3) = 7 + 3	
x + 0 = 7 + 3	
x = 7 + 3	
x = 10	

3. Find a solution set for x-4=-3

x-4 = -3	Given
x + -4 = -3	
(x+-4)+4=-3+4	
x + (-4 + 4) = -3 + 4	
x + 0 = -3 + 4	
x = -3 + 4	
x = 1	

4. Find a solution set for -3 + x = -1

-3+x=-1	Given
x + -3 = -1	
(x+-3)+3=-1+3	
x + (-3 + 3) = -1 + 3	
x + 0 = -1 + 3	
x = -1 + 3	
x = 2	

5. Find a solution set for -3 = -2 + x

-3 = -2 + x	Given
-2 + x = -3	
x + -2 = -3	
(x+-2)+2=-3+2	
x + (-2 + 2) = -3 + 2	
x + 0 = -3 + 2	
x = -3 + 2	
x = -1	

Quiz on Axioms for Addition

1. Find a solution set for x + 4 = 7

x + 4 = 7	Given
(x+4)+-4=7+-4	
x + (4 + -4) = 7 + -4	
x + 0 = 7 + -4	
x = 7 + -4	
x = 3	

2. Find a solution set for x-3=7

2. This a solution set for $x = 3 - 7$	
x - 3 = 7	Given
x + -3 = 7	
(x+-3)+3=7+3	
x + (-3 + 3) = 7 + 3	
x + 0 = 7 + 3	
x = 7 + 3	
x = 10	

3. Find a solution set for x-4=-3

x - 4 = -3	Given
x + -4 = -3	
(x+-4)+4=-3+4	
x + (-4 + 4) = -3 + 4	
x + 0 = -3 + 4	
x = -3 + 4	
x = 1	

4. Find a solution set for -3 + x = -1

-3+x=-1	Given
x + -3 = -1	
(x+-3)+3=-1+3	
x + (-3 + 3) = -1 + 3	
x + 0 = -1 + 3	
x = -1 + 3	
x = 2	

5. Find a solution set for -3 = -2 + x

-3 = -2 + x	Given
-2 + x = -3	
x + -2 = -3	
(x+-2)+2=-3+2	
x + (-2 + 2) = -3 + 2	
x + 0 = -3 + 2	
x = -3 + 2	
x = -1	