$10-5 \frac{\text{Practice}}{\text{Hyperbolas}}$

Form G

Find the equation of a hyperbola with the given values, foci, or vertices. Assume that the transverse axis is horizontal.

1.
$$a = 7$$
, $b = 2$

3.
$$b = 9$$
, $c = 12$

5.
$$a = 7$$
, $c = 9$

7.
$$b = 14$$
, $c = 20$

9. foci (
$$\pm 9$$
, 0), vertices (± 4 , 0)

11. foci (
$$\pm 13$$
, 0), vertices (± 12 , 0)

Find the vertices, foci, and asymptotes of each hyperbola. Then sketch the graph.

13.
$$\frac{x^2}{4} - \frac{y^2}{4} = 1$$

15.
$$\frac{x^2}{25} - \frac{y^2}{4} = 1$$

17.
$$4y^2 - 36x^2 = 144$$

Hyperbolas

19. The graph at the right shows a 2-dimensional view of a satellite dish and the small reflector inside it. The vertex of the small reflector is 6 in. from focus F_1 and 20 in. from focus F_2 . What equation best models the small reflector?

Write the equation of a hyperbola with the given foci and vertices.

21. foci
$$(0, \pm 12)$$
, vertices $(0, F\pm 10)$

23. foci (
$$\pm 9$$
, 0), vertices (± 5 , 0)

Graph each equation.

25.
$$27y^2 - 9x^2 = 243$$

27. Writing How can you tell from the standard form of the equation of a hyperbola whether the hyperbola is horizontal or vertical?

29. Reasoning Describe how you can find the asymptotes when you have the a and c values for a vertical hyperbola.