Geometric Series

Evaluate each finite series for the specified number of terms.

1.
$$40 + 20 + 10 + \dots$$
; $n = 10$

3.
$$15 + 12 + 9.6 + ...; n = 40$$

5.
$$0.2 + 0.02 + 0.002 + ...; n = 8$$

7. This month, your friend deposits \$400 to save for a vacation. She plans to deposit 10% more each successive month for the next 11 months. How much will she have saved after the 12 deposits?

Determine whether each infinite geometric series *diverges* or *converges*. State whether each series has a sum.

Evaluate each infinite geometric series.

15.
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$

- **19.** The end of a pendulum travels 50 cm on its first swing. Each swing after the first, it travels 99% as far as the preceding swing. How far will the pendulum travel before it stops?
- **21.** The first year a toy manufacturer introduces a new toy, its sales total \$495,000. The company expects its sales to drop 10% each succeeding year. Find the total expected sales in the first 6 years. Find the total expected sales if the company offers the toy for sale for as long as anyone buys it.

9-5

Practice (continued)

Geometric Series

Determine whether each series is *arithmetic* or *geometric*. Then evaluate the series for the specified number of terms.

22.
$$2 + 5 + 8 + 11 + ...; n = 9$$

24.
$$-3 + 6 - 12 + 24 - ...; n = 10$$

26.
$$4 + 8 + 16 + 32 + \dots$$
; $n = 15$

Evaluate each infinite series that has a sum.

29.
$$\sum_{n=1}^{\infty} (-2.1)^{n-1}$$

31.
$$\sum_{n=1}^{\infty} 2\left(\frac{5}{3}\right)^{n-1}$$

Find the specified value for each infinite geometric series.

33.
$$a_1 = 5$$
, $S = \frac{25}{3}$, find r

35.
$$a_1 = 3$$
, $S = 12$, find r

37. Error Analysis Your friend says that an infinite geometric series cannot have a sum because it's infinite. You say that it is possible for an infinite geometric series to have a sum. Who is correct? Explain.