8-1

Practice

Form G

Inverse Variation

Is the relationship between the values in each table a *direct variation*, an *inverse variation*, or *neither*? Write equations to model the direct and inverse variations.

Suppose that x and y vary inversely. Write a function that models each inverse variation. Graph the function and find y when x = 10.

7.
$$x = 7$$
 when $y = 2$

9.
$$x = \frac{1}{3}$$
 when $y = \frac{9}{10}$

11. The minimum number of carpet rolls n needed to carpet a house varies directly as the house's square footage h and inversely with the square footage r in one roll. It takes a minimum of two $1200-\text{ft}^2$ carpet rolls to cover 2300 ft^2 of floor. What is the minimum number of $1200-\text{ft}^2$ carpet rolls you would need to cover 2500 ft^2 of floor? Round your answer up to the nearest half roll.

8-1

Practice (continued)

Form G

Inverse Variation

Each ordered pair is from an inverse variation. Find the constant of variation.

13.
$$\left(3\frac{1}{3}\right)$$

15. (10, 5)

19. $\left(\frac{1}{3}, \frac{6}{7}\right)$

21.
$$\left(\frac{5}{8}, -\frac{2}{5}\right)$$

Write the function that models each variation. Find z when x = 6 and y = 4.

23. z varies jointly with x and y. When x = 7 and y = 2, z = 28.

Each pair of values is from an inverse variation. Find the missing value.