7-6

Practice

Form G

Natural Logarithms

Write each expression as a single natural logarithm.

5.
$$\frac{1}{2} \ln 9 + \ln 3x$$

7.
$$\frac{1}{3} \ln 8 + \ln x$$

Solve each equation. Check your answers. Round your answer to the nearest hundredth.

11. 2
$$\ln(3x-4) = 7$$

13.
$$-7 + \ln 2x = 4$$

15.
$$\ln x + \ln 3x = 14$$

17.
$$\ln x + \ln 4 = 2$$

19.
$$\ln e^x = 3$$

21.
$$\ln e^{x+5} = 17$$

23. 5
$$\ln(3x-2) = 15$$

25.
$$\ln(3x+4)=5$$

27.
$$\ln (2x-1)^2 = 4$$

Use natural logarithms to solve each equation. Round your answer to the nearest hundredth.

29.
$$4e^x = 10$$

31.
$$4e^{3x^21} = 5$$

33.
$$5e^{6x+3} = 0.1$$

35.
$$e^{\frac{x}{5}} = 32$$

37.
$$7e^{5x+8} = 0.23$$

39.
$$e^{\frac{x}{5}} = 25$$

41.
$$e^{\ln 5x} = 20$$

43.
$$e^{x+6} + 5 = 1$$

Name	Class	Date
------	-------	------

7-6

Practice (continued)

Form G

Natural Logarithms

The formula $P = 50e^{-\frac{t}{25}}$ gives the power output P, in watts, needed to run a certain satellite for t days. Find how long a satellite with the given power output will operate.

The formula for the maximum velocity v of a rocket is $v = -0.0098t + c \ln R$, where c is the exhaust velocity in km/s, t is the fring time, and R is the mass ratio of the rocket. A rocket must reach 7.7 km/s to attain a stable orbit 300 km above Earth.

- **47.** What is the maximum velocity of a rocket with a mass ratio of 18, an exhaust velocity of 2.2 km/s, and a firing time of 25 s?
- **49.** What mass ratio would be needed to achieve a stable orbit for a rocket with an exhaust velocity of 2.5 km/s and a f ring time of 29 s?

By measuring the amount of carbon-14 in an object, a paleontologist can determine its approximate age. The amount of carbon-14 in an object is given by $y = ae^{-0.00012t}$, where a is the amount of carbon-14 originally in the object, and t is the age of the object in years.

51. A fossil of a bone contains 32% of its original carbon-14. What is the approximate age of the bone?

Simplify each expression.

53.
$$\ln e^4$$

55.
$$\frac{\ln e^2}{2}$$