6-6

Practice

Form G

Function Operations

Let f(x) = 4x - 1 and $g(x) = 2x^2 + 3$. Perform each function operation and then find the domain.

1.
$$(f+g)(x)$$

3.
$$(g-f)(x)$$

5.
$$\frac{f}{g}(x)$$

Let f(x) = 2x and $g(x) = \sqrt{x} - 1$. Perform each function operation and then find the domain of the result.

7.
$$(f+g)(x)$$

9.
$$(g-f)(x)$$

11.
$$\frac{f}{g}(x)$$

Let f(x) = -3x + 2, $g(x) = \frac{x}{5}$, $h(x) = -2x^2 + 9$, and j(x) = 5 - x. Find each value or expression.

13.
$$(f \circ j)(3)$$

15.
$$(h \circ g)(-5)$$

17.
$$f(x) + j(x)$$

19.
$$(g \circ f)(-5)$$

21.
$$3f(x) + 5g(x)$$

23.
$$g(f(x))$$

- **25.** A video game store adds a 25% markup on each of the games that it sells. In addition to the manufacturer's cost, the store also pays a \$1.50 shipping charge on each game.
 - **a.** Write a function to represent the price f(x) per video game after the store's markup.
 - **b.** Write a function g(x) to represent the manufacturer's cost plus the shipping charge.
 - **c.** Suppose the manufacturer's cost for a video game is \$13. Use a composite function to find the cost at the store if the markup is applied after the shipping charge is added.
 - **d.** Suppose the manufacturer's cost for a video game is \$13. Use a composite function to find the cost at the store if the markup is applied before the shipping charge is added.

6-6

Practice (continued)

Function Operations

- **27.** A boutique prices merchandise by adding 80% to its cost. It later decreases by 25% the price of items that do not sell quickly.
 - **a.** Write a function f(x) to represent the price after the 80% markup.
 - **b.** Write a function g(x) to represent the price after the 25% markdown.
 - **c.** Use a composition function to find the price of an item, after both price adjustments, that originally costs the boutique \$150.
 - **d.** Does the order in which the adjustments are applied make a difference? Explain.

Let $g(x) = x^2 - 5$ and h(x) = 3x + 2. Perform each function operation.

29. $(h \circ g)(x)$

31. -2g(x) + h(x)