5-6

Practice

Form G

The Fundamental Theorem of Algebra

Without using a calculator, find all the complex roots of each equation.

1.
$$x^5 - 3x^4 - 8x^3 - 8x^2 - 9x - 5 = 0$$

2.
$$x^3 - 2x^2 + 4x - 8 = 0$$

3.
$$x^3 + x^2 - x + 2 = 0$$

4.
$$x^4 - 2x^3 - x^2 - 4x - 6 = 0$$

5.
$$x^4 + 3x^3 - 21x^2 - 48x + 80 = 0$$

6.
$$x^5 - 3x^4 + x^3 + x^2 + 4 = 0$$

Find all the zeros of each function.

7.
$$y = 5x^3 - 5x$$

8.
$$f(x) = x^3 - 16x$$

9.
$$g(x) = 12x^3 - 2x^2 - 2x$$

10.
$$y = 6x^3 + x^2 - x$$

11.
$$f(x) = 5x^3 + 6x^2 + x$$

12.
$$y = -4x^3 + 100x$$

For each equation, state the number of complex roots, the possible number of real roots, and the possible rational roots.

13.
$$2x^2 + 5x + 3 = 0$$

14.
$$3x^2 + 11x - 10 = 0$$

15.
$$2x^4 - 18x^2 + 5 = 0$$

16.
$$4x^3 - 12x + 9 = 0$$

17.
$$6x^5 - 28x + 15 = 0$$

18.
$$x^3 - x^2 - 2x + 7 = 0$$

19.
$$x^3 - 6x^2 - 7x - 12 = 0$$

20.
$$2x^4 + x^2 - x + 6 = 0$$

21.
$$4x^5 - 5x^4 + x^3 - 2x^2 + 2x - 6 = 0$$

22.
$$7x^6 + 3x^4 - 9x^2 + 18 = 0$$

23.
$$5 + x + x^2 + x^3 + x^4 + x^5 = 0$$

24.
$$6 - x + 2x^3 - x^3 + x^4 - 8x^5 = 0$$

Find the number of complex roots for each equation.

25.
$$x^8 - 5x^6 + x^4 + 2x - 16 = 0$$

26.
$$x^{10} - 100 = 0$$

27.
$$2x^4 + x^3 - 3x^2 + 4x - 2 = 0$$

28.
$$-4x^3 + x^2 - 3x + 10 = 0$$

29.
$$x^6 + 2x^5 + 3x^4 + 4x^3 + 5x^2 + 6x + 10 = 0$$

30.
$$-3x^5 + 4x^4 + 5x^2 - 15 = 0$$

5-6

Practice (continued)

Form G

The Fundamental Theorem of Algebra

Find all the zeros of each function.

31.
$$f(x) = x^3 - 9x^2 + 27x - 27$$

32.
$$y = 2x^3 - 8x^2 + 18x - 72$$

33.
$$y = x^3 - 10x - 12$$

34.
$$y = x^3 - 4x^2 + 8$$

35.
$$f(x) = 2x^3 + x - 3$$

36.
$$v = x^3 - 2x^2 - 11x + 12$$

37.
$$g(x) = x^3 + 4x^2 + 7x + 28$$

38.
$$f(x) = x^3 + 3x^2 + 6x + 4$$

39.
$$g(x) = x^4 - 5x^2 - 36$$

40.
$$y = x^4 - 7x^2 + 12$$

41.
$$y = 9x^4 + 5x^2 - 4$$

42.
$$v = 4x^4 - 11x^2 - 3$$

- **43. Error Analysis** Your friend says that the equation $4x^7 3x^3 + 4x^2 x + 2 = 0$ has 5 complex roots. You say that the equation has 7 complex roots. Who is correct? What mistake was made?
- **44.** A section of roller coaster can be modeled by the function $f(x) = x^5 5x^4 31x^3 + 113x^2 + 282x 360$. A walkway bridge will be placed at one of the zeros. What are the possible locations for the walkway bridge?
- **45. Writing** Using the Fundamental Theorem of Algebra, explain how $x^3 = 0$ has 3 roots and 3 linear factors.
- **46.** How many complex roots does the equation $x^4 = 256$ have? What are they?
- **47. Reasoning** Can a fifth-degree polynomial with rational coefficients have 4 real roots and 1 irrational root? Explain why or why not?