5-5

Practice

From G

Theorems About Roots of Polynomial Equations

Use the Rational Root Theorem to list all possible rational roots for each equation. Then find any actual rational roots.

1.
$$x^3 + 5x^2 - 2x - 15 = 0$$

2.
$$36x^3 + 144x^2 - x - 4 = 0$$

3.
$$2x^3 + 5x^2 + 4x + 1 = 0$$

4.
$$12x^4 + 14x^3 - 5x^2 - 14x - 4 = 0$$

5.
$$5x^3 - 11x^2 + 7x - 1 = 0$$

6.
$$x^3 + 81x^2 - 49x - 49 = 0$$

A polynomial function P(x) with rational coefficients has the given roots. Find two additional roots of P(x) = 0.

7. 2 + 3*i* and
$$\sqrt{7}$$

8.
$$3-\sqrt{2}$$
 and $1+\sqrt{3}$

9.
$$-4i$$
 and $6-i$

10.
$$5 - \sqrt{6}$$
 and $-2 + \sqrt{10}$

11.
$$\sqrt{5}$$
 and $-\sqrt{13}$

12.
$$1 - \sqrt{10}$$
 and $2 + \sqrt{2}$

Write a polynomial function with rational coefficients so that P(x) = 0 has the given roots.

15.
$$3i$$
 and $\sqrt{6}$

16. 2 + *i* and
$$1 - \sqrt{5}$$

17.
$$-5$$
 and $3i$

What does Descartes' Rule of Signs say about the number of positive real roots and negative real roots for each polynomial function?

19.
$$P(x) = 3x^3 + x^2 - 8x - 12$$

20.
$$P(x) = 2x^4 - x^3 - 3x + 7$$

21.
$$P(x) = 4x^5 - x^4 - x^3 + 6x^2 - 5$$

22.
$$P(x) = x^3 + 4x^2 + x - 6$$

5-5

Practice (continued)

Form G

Theorems About Roots of Polynomial Equations

Find all rational roots for P(x) = 0.

23.
$$P(x) = x^3 - 5x^2 + 2x + 8$$

25.
$$P(x) = 2x^3 + 13x^2 + 17x - 12$$

27.
$$P(x) = x^3 - 18x + 27$$

29.
$$P(x) = x^3 - 6x^2 + 13x - 10$$

31.
$$P(x) = x^3 - 5x^2 + 17x - 13$$

33.
$$P(x) = x^3 - 5x^2 - x + 5$$

35.
$$P(x) = x^3 - 2x^2 - 5x + 6$$

37.
$$P(x) = x^3 + x^2 - 5x + 3$$

39.
$$P(x) = x^3 + x^2 - 7x + 2$$

24.
$$P(x) = x^3 + x^2 - 17x + 15$$

26.
$$P(x) = x^3 - x^2 - 34x - 56$$

28.
$$P(x) = x^4 - 5x^2 + 4$$

30.
$$P(x) = x^3 - 5x^2 + 4x + 10$$

32.
$$P(x) = x^3 + x + 10$$

34.
$$P(x) = x^3 - 12x + 16$$

36.
$$P(x) = x^3 - 8x^2 - 200$$

38.
$$P(x) = 4x^3 - 12x^2 - x + 3$$

40.
$$P(x) = 12x^3 + 31x^2 - 17x - 6$$

Write a polynomial function P(x) with rational coefficients so that P(x) = 0 has the given roots.

41.
$$\sqrt{3}$$
, 2, $-i$

44.
$$-\sqrt{7}$$
, *i*

46.
$$6$$
, $3 - 2i$

- **47. Error Analysis** A student claims that 2i is the only imaginary root of a polynomial equation that has real coefficients. Explain the student's mistake.
- **48.** You are building a rectangular sandbox for a children's playground. The width of the sandbox is 4 times its height. Te length of the sandbox is 8 ft more than 2 times its height. You have 40 ft³ of sand available to fill this sandbox. What are the dimensions of the sandbox?
- **49. Writing** According to the Rational Root Theorem, what is the relationship between the polynomial equation $2x^4 x^3 7x^2 + 5x + 3 = 0$ and rational roots of the form $\frac{p}{q}$, where $\frac{p}{q}$ is in simplest form?