Practice

Form G

Polynomials, Linear Factors, and Zeros

Write each polynomial in factored form. Check by multiplication.

1.
$$2x^3 + 10x^2 + 12x$$

2.
$$x^4 - x^3 - 6x^2$$

3.
$$-3x^3 + 18x^2 - 27x$$

4.
$$x^3 - 2x^2 + x$$

5.
$$x^3 + 7x^2 + 15x + 9$$

6.
$$2x^4 + 23x^3 + 60x^2 - 125x - 500$$

Find the zeros of each function. Then graph the function.

7.
$$y = (x + 1)(x - 1)(x - 3)$$
 8. $y = (x + 2)(x - 3)$

8.
$$y = (x + 2)(x - 3)$$

9.
$$y = x(x-2)(x+5)$$

10.
$$y = (x - 6)(x + 3)$$

10.
$$y = (x-6)(x+3)$$
 11. $y = (x+4)^2(x+1)$ **12.** $y = (x-1)(x+7)$

12.
$$v = (x - 1)(x + 7)$$

Write a polynomial function in standard form with the given zeros.

13.
$$x = -1, 3, 4$$

14.
$$x = 1, 1, 2$$

15.
$$x = -3, 0, 0, 5$$

16.
$$x = 4, 2, -3, 0$$

17.
$$x = -1, 5, -2$$

18.
$$x = -6$$
, 0

Find the zeros of each function. State the multiplicity of multiple zeros.

19.
$$y = (x - 5)^3$$

20.
$$y = x(x-8)^2$$

21.
$$y = (x-2)(x+7)^3$$

22.
$$y = x^4 - 8x^3 + 16x^2$$
 23. $y = 9x^3 - 81x$

23.
$$y = 9x^3 - 81x$$

24.
$$y = (2x + 5)(x - 3)^2$$

Practice (continued)

Form G

Polynomials, Linear Factors, and Zeros

Find the relative maximum and relative minimum of the graph of each function.

25.
$$f(x) = x^3 - 7x^2 + 10x$$

26.
$$f(x) = x^3 - x^2 - 9x + 9$$

27.
$$f(x) = x^4 + x^3 - 3x^2 - 5x - 2$$

28.
$$f(x) = x^2 - 6x + 9$$

- **29.** A rectangular box has a square base. The combined length of a side of the square base, and the height is 20 in. Let *x* be the length of a side of the base of the box.
 - **a.** Write a polynomial function in factored form modeling the volume V of the box.
 - **b.** What is the maximum possible volume of the box?
- **30. Reasoning** A polynomial function has a zero at x = -2a. Find one of its factors.
- **31.** The side of a cube measures 3x + 2 units long. Express the volume of the cube as a polynomial.
- **32. Writing** The volume of a box is $x^3 3x^2 + 3x 1$ cubic units. Explain how to find the length of a side if the box is a cube.
- **33.** You have a block of wood that you want to use to make a sculpture. The block is currently 3x units wide, 4x units high, and 5x units deep. You need to remove 1 unit from each dimension before you can begin your sculpture.
 - a. What is the original volume of the block?
 - **b.** What is the new volume of the block?
 - **c.** What is the volume of the wood that you remove?
- **34.** What are the zeros and the multiplicity of each zero for the polynomial function $x^4 2x^2 + 1$?
- **35. Error Analysis** On your homework, you wrote that the polynomial function from the given zeros x = 3, 0, -9, 1 is $y = x^4 + 5x^3 33x^2 + 27x$. Your friend wrote that the polynomial function is $y = x^3 + 5x^2 33x + 27$. Who is correct? What mistake was made?