Practice

Form G

Polynomial Functions

Write each polynomial in standard form. Then classify it by degree and by number of terms.

1.
$$4x + x + 2$$

2.
$$-3 + 3x - 3x$$

3.
$$6x^4 - 1$$

4.
$$1 - 2s + 5s^4$$

5.
$$5m^2 - 3m^2$$

6.
$$x^2 + 3x - 4x^3$$

7.
$$-1 + 2x^2$$

8.
$$5m^2 - 3m^3$$

9.
$$5x - 7x^2$$

10.
$$2 + 3x^3 - 2$$

11.
$$6 - 2x^3 - 4 + x^3$$

12.
$$6x - 7x$$

13.
$$a^3(a^2+a+1)$$

14.
$$x(x + 5) - 5(x + 5)$$

15.
$$p(p-5)+6$$

16.
$$(3c^2)^2$$

17.
$$-(3 - b)$$

18.
$$6(2x-1)$$

19.
$$\frac{2}{3} + s^2$$

20.
$$\frac{2x^4+4x-5}{4}$$

21.
$$\frac{3-z^5}{3}$$

Determine the end behavior of the graph of each polynomial function.

22.
$$y = 3x^4 + 6x^3 - x^2 + 12$$
 23. $y = 50 - 3x^3 + 5x^2$ **24.** $y = -x + x^2 + 2$

23.
$$y = 50 - 3x^3 + 5x^2$$

24.
$$y = -x + x^2 + 2$$

25.
$$y = 4x^2 + 9 - 5x^4 - x^3$$

25.
$$y = 4x^2 + 9 - 5x^4 - x^3$$
 26. $y = 12x^4 - x + 3x^7 - 1$ **27.** $y = 2x^5 + x^2 - 4$

27.
$$y = 2x^5 + x^2 - 4$$

28.
$$v = 5 + 2x + 7x^2 - 5x^3$$

28.
$$y = 5 + 2x + 7x^2 - 5x^3$$
 29. $y = 20 - 5x^6 + 3x - 11x^3$ **30.** $y = 6x + 25 + 4x^4 - x^2$

30.
$$y = 6x + 25 + 4x^4 - x^2$$

Describe the shape of the graph of each cubic function by determining the end behavior and number of turning points.

31.
$$y = x^3 + 4x$$

32.
$$y = -2x^3 + 3x - 1$$

33.
$$y = 5x^3 + 6x^2$$

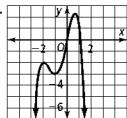
Determine the degree of the polynomial function with the given data.

34.

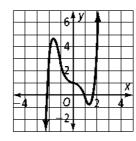
\int	X	У	1
	-2	– 16	
	– 1	1	
	0	4	
	1	<u>4</u> 5	
	2	16	
1			Ţ,

35.

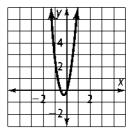
	x	у	
	-2	52	
	– 1	6	
	0	2	
	1	4	
	2	48	
1			J


F 1 Practice (continued)

Form G


Polynomial Functions

Determine the sign of the leading coefficient and the degree of the polynomial function for each graph.


36.

37.

38.

- **39. Error Analysis** A student claims the function $y = 3x^4 x^3 + 7$ is a fourth-degree polynomial with end behavior of down and down. Describe the error the student made. What is wrong with this statement?
- **40.** The table at the right shows data representing a polynomial function.
 - **a.** What is the degree of the polynomial function?
 - **b.** What are the second differences of the *y*-values?
 - **c.** What are the differences when they are constant?

 x
 y

 -3
 -999

 -2
 -140

 -1
 -7

 0
 0

 1
 1

 2
 116

 3
 945

Classify each polynomial by degree and by number of terms. Simplify first if necessary.

41.
$$4x^5 - 5x^2 + 3 - 2x^2$$

42.
$$b(b-3)^2$$

43.
$$(7x^2 + 9x - 5) + (9x^2 - 9x)$$

44.
$$(x + 2)^3$$

45.
$$(4s^4 - s^2 - 3) - (3s - s^2 - 5)$$

- **47. Open-Ended** Write a third-degree polynomial function. Make a table of values and a graph.
- **48. Writing** Explain why finding the degree of a polynomial is easier when the polynomial is written in standard form.