M

MEET 1 PYTHAGOREAN DIVISION NOV. 6, 1997

GRADE 9

SOLUTIONS

The answer to each question is in parenthesis at the beginning of each solution.

- 1) (b or sometimes) 7>6 and -2>-3 where -14>-18. 10>6 and -2>-3 but -20<-18.
- 2) $(3 \text{ and } -2) (x+3)^{x-3} = 1$ when the exponent = 0 (x = 3) or when x+3 = 1 (x = -2). $[(x+3)^{x-2} = 1 \text{ would have } 3 \text{ solutions since the exponent is even when } x+3 = -1$.
- 3) (b or $6\sqrt{2}$) The diagonal of the large square is $10\sqrt{2}$ (by the Pythagorean Theorem). The diagonal of the small square is $4\sqrt{2}$. $10\sqrt{2}-4\sqrt{2}=6\sqrt{2}$.
- 4) (6) $6S^2 = S^3$ when S = 6. For S<6, the number of square units in the S.A. is greater than the number of cubic units in the volume.
- 5) (60) $ab \cdot bc \cdot ac = 10 \cdot 12 \cdot 30 = 3600$. $a^2b^2c^2 = 3600$; abc = 60. or; $\frac{ab}{ac} = \frac{10}{30} = \frac{1}{3}$. c = 3b; $3b^2 = 12$; b = 2. If b = 2, c = 6 and a = 5. abc = 60.
- 6) (31) Let x = the number of kids ahead of John. x = the number of kids behind John. Therefore, x + 1 = the number of kids on the merry-go-round.

$$\frac{5}{6}$$
 x + $\frac{1}{5}$ x = x + 1; x = 30 and x+1 = 31 kids on the merry-go-round.