
American Computer Science League

PARITY

PROBLEM: If a binary number contains an even number of 1 bits, we say that it has
even parity. If the number contains an odd number of 1 bits, it has odd parity. When data
must be transmitted from one device to another, there is always the possibility that an
error might occur. Detection of a single incorrect bit in a data word can be detected
simply by adding an additional parity bit to the end of the word. If both the sender and
receiver agree to use even parity, for example, the sender can set the parity bit to either 1
or zero so as to make the total number of 1 bits in the word an even number:

The receiver of a transmission also counts the 1 bits in the received value, and if the
count is not even, an error condition is signaled and the sender is usually instructed to re-
send the data. In 1950, Richard Hamming developed an innovative way of adding bits to
a number in such a way that transmission errors involving no more than a single bit could
be detected and corrected. For data of size 2n bits, n+1 parity bits are embedded to form a
codeword. The parity bit positions are powers of 2: {1,2,4,8,16,32...}. All remaining
positions hold data bits. The 16-bit data value 1000111100110101 would be stored as the
21-bit codeword as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P P 1 P 0 0 0 P 1 1 1 1 0 0 1 P 1 0 1 0 1

Parity Bit Rule
1 use 1, skip 1, use 1, skip 1, ...
2 use 2, skip 2, use 2, skip 2, ...
4 use 4, skip 4, use 4, ...
8 use 8, skip 8, use 8, ...

Now it's time to put all of this information together and create a codeword. For this
example we will use even parity and the 8-bit data value 1 1 0 0 1 1 1 1, which will
produce a 12-bit codeword. Let's start by filling in the data bits:

1 2 3 4 5 6 7 8 9 10 11 12
P P 1 P 1 0 0 P 1 1 1 1

To calculate the parity bit in position 1, start with the parity bit location, which is initially
0, and sum the bits in positions 1, 3, 5, 7, 9, and 11: (0+1+1+0+1+1 = 4). This is done

2004 - 2005 Program #4

All-Star Contest

8-bit data value: 1 0 1 1 0 1 0 1
added parity bit: 1
transmitted data: 1 0 1 1 0 1 0 1 1

8-bit data value: 1 0 1 1 0 1 0 0
added parity bit: 0
transmitted data: 1 0 1 1 0 1 0 0 0

The adjacent table gives the rules
for calculating the value of each
parity bit up to bit 8.



by the rule: use 1, skip 1. The positions 1,3,5,7,9 and 11 are called the bit group for P1.
This sum is even so parity bit 1 should be assigned a value of 0.

1 2 3 4 5 6 7 8 9 10 11 12
0 P 1 P 1 0 0 P 1 1 1 1

To generate the parity bit in position 2, sum the bits in positions 2, 3, 6, 7, 10, and 11:
(0+1+0+0+1+1 = 3). This was done by the rule: use 2, skip 2. The sum is odd, so we
assign a value of 1 to parity bit 2. This produces even parity for the combined group of
bits 2, 3, 6, 7, 10, and 11:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 P 1 0 0 P 1 1 1 1

When all parity bits have been created (P4 = 0 because of a sum of 2. P8 = 0 because of
a sum of 4) the resulting code word is: 011010001111.

INPUT: There will be 10 lines of input. Each line will contain 2 strings. The first string
will be a hexadecimal value that needs to be converted to binary to form the data value.
The second string will be either the word ODD or EVEN. This second string gives the
parity to be used to create the codeword. ACSL guarantees that the hexadecimal string
will produce no more than 128 digits.

OUTPUT: For each line of input, print the parity bits, in order, needed to produce the
codeword. Sample #1 gives the input and output for the above example.

SAMPLE INPUT SAMPLE OUTPUT

1. CF, EVEN
2. F, EVEN
3. F, ODD
4. 22, EVEN

1. 0100
2. 111
3. 000
4. 1011


