- I.9 Suppose f is a polynomial of degree 5, f(0) = 3, f(1) =1, f(2) = -1, f(3) = -1/2. What can we say about the roots of f? (a) there may not be any (b) there is a negative root (c) there is a root greater than 3 (d) there is a root between 1 and 2 (e) there is a root between 2 and 3 I.14 Which of the following polynomials has the property
- that if r is a root (real or complex) then so is -r?
 - (a) $x^5 + 3x^2 + 6$ (b) $x^7 x^5 + 2x^3 x$ (c) $x^4 + 2x^2 + 6$
- x 1 (d) $x^4 + x^2 + x$ (e) none of (a),(b),(c),(d) I.24 Which of the following polynomials has the property
- that the sum of its roots (real and complex) is 6 and the product of its roots is 3?
- (a) $x^3 6x^2 + 3x 1$ (b) $x^3 3x^2 + 6x 1$ (c) $x^3 6x^2$ + 2x + 3 (d) $x^3 - 6x^2 + 2x - 3$ (e) $x^2 - 11$ I.36 If r_1 , r_2 , ... are the values of x for which
- - $x^{8} + 4x^{6} \pi x^{4} + 3x^{2} 2^{1/2}$ has a minimum, then $r_1 + r_2 + ... + is$
- (a) 0 (b) 1 (c) -1 (d) 2 (e) an irrational number. II.15 If p is a polynomial with real coefficients and no multiple roots, which of the following could be true?
 - (a) p is of degree 6 and has exactly 3 real roots.
 - (b) p is of degree 7 and has no real roots.
 - (c) p is of degree 9 and has exactly 1 real root.
 - (d) p is of degree 17 and has exactly 2 real roots.
 - (e) p is of degree 6 and has exactly 7 real roots.
- II.26 If $p(x) = x^{2n} + ax^{2n-1} + ...$ is a polynomial of degree 2n which has as roots the numbers +1,-1,+2,-2,+3,-3,...+n,-n then what is a? (a) n(n+1)/2 (b) 0 (c) 1 (d) n (e) -1
- II.28 Suppose p is a polynomial of degree 6 with real coefficients such that p(-1) = 3, p(0) = -2, p(4) = 1, p(6) = -2-2. Let n be the number (counting multiplicities) of real roots of p. Which of the following is the most we can say about n? (a) $n \le 6$ (b) $n \ge 1$ (c) $3 \le n \le 6$ (d) $4 \le n \le 6$ (e) $2 \le n \le 4$
- II.34 Suppose a and b are integers such that the polynomial $x^6 + ax^5 + bx^4 + ax^3 - bx^2 - 1$ has a positive integral root. What is a? (a) 1 (b) -1 (c) 0 (d) 2 (e) there are several values depending on b
- III.34 The roots of $64x^3 144x^2 + 92x 15 = 0$ are in arithmetic progression. The difference between the largest and smallest roots is
 - (a) 2 (b) 1 (c) 4 (d) 3/8 (e) 1/4.
- IV.24 Given the cubic equation $x^3 + Ax^2 + Bx + C = 0$, if S is the sum of the roots and P is the product of the roots then (a) C = PS (b) B = P + S (c) A = P/S - (d) AB = PS (e) A + C = -P - S
- IV.28 If $x^{70} + x^{10} + x 5$ is divided by $x^2 1$ the remainder is (a) x - 3 (b) 2x + 7 (c) 5x - 1(d) x + 2 (e) 5 - 2x.

- V.3 If X = 1 and X = -1 are solutions of F(X) = 0 where F(X) is a polynomial, then a divisor of F(X) is
 - (a) X (b) $X^2 + 1$ (c) 2X + 1 (d) X + 2 (e) $X^2 1$
- VI.26 The equation $x^2 + x + 1 = A$ has exactly one real root provided $A = (a) \ 0 \ (b) \ 1 \ (c) \ -1 \ (d) \ 2/3 \ (e) \ 3/4$
- VII.23 If $i^2 = -1$ then among all complex numbers z = a + bi such that $z^3 = i$, the largest value of b is
 - (a) 1/3 (b) 1/4 (c) 2/3 (d) 1/2 (e) 3/2.
- VII.25 If the polynomial $x^3 + bx^2 + cx + d$ has all real roots, the sum of the roots is 4, the product of the roots is -6, and one of the roots is 3, then $c = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left($
 - (a) -3 (b) 5 (c) -4 (d) 1 (e) cannot tell from the given information.
- VIII.15 Given that one root of the equation $2x^4 + 5x^3 10x^2 + 5x 12 = 0$ is x = i (where $i^2 = -1$) then the sum of all real roots is (a) 0 (b) 5 (c) -5 (d) -5/2 (e) 13/2
- IX.2 If x = i (where $i^2 = -1$) is a root of a polynomial p(x) = 0 with real number coefficients then p(x) is divisible
- by (a) $x^2 2x + 2$ (b) $x^2 + x + 1$ (c) $x^2 2x 4$
- (d) $x^2 x + 1$ (e) $x^2 + 1$ X.4 The sum of the real roots of the equation $x^5 - x^4 + 2x^3 - 2x^2 + x - 1 = 0$ is (a) 0 (b) 1 (c) 2 (d) 5 (e) 9