PROBLEMS ON LOGARITHMS

I.1 If
$$a^{10} = x^2$$
, $x > 0$, then $log_a(x) =$
(a) $10^{1/2}$ (b) 100 (c) 20 (d) 5 (e) 50

III.26 If
$$log_{10}^2 = a$$
 and $log_{10}^3 = b$ then $log_5^{12} =$

- (a) (a + b)(1 + a) (b) (2a + b)/(1 + a)(c) (a + 2b)/(1 + a) (d) (2a + b)/(1 a)
- (e) (a + 2b)/(1 a)
- IV.19 Given that a and x are positive numbers which simultaneously satisfy the equations

$$2 = 8 \text{ and } \log_6 x = \log_6 a + 1$$
then $a = (a) 2^{3/2}$ (b) $6^{1/2}$ (c) $(2^{1/2} + 1)/6$
(d) $(2^{1/2} - 1)/6$ (e) 32

V.24 If
$$\log_2(\log_2(\log_3 x)) = \log_2(\log_3(\log_2 y) = \log_3(\log_2(\log_2 z)) = 1$$
 then $x + y + z = (a) 36$ (b) 64 (c) 324 (d) 656 (e) 849

- VI.22 Given that $log_3 8 = a$ and $log_{16} 5 = b$ then $log_2 15 =$
 - (a) (3 + 4ab)/a (b) 5a + b/3 (c) (a + 3b)/5
 - (d) (4a + 5b)/3 (e) (a + 5b)/4.
- VII.14 If $2^{(x^n)} = y$ then x is the following exponent of 2 (each log has base 2):
 - (a) $(\log y 1)/n$ (b) $\log (\log y)/n$ (c) $\log (y/n)$ (d) $(\log y)/(\log n)$ (e) $\log (\log (ny + 1)$

VIII.19 If
$$\log_2 xy^2 = 4$$
, $\log_2 (y/z) = 3$ and $\log_2 xz^3 = -4$ then $x + y + z = (a) 21/2$ (b) 19/3 (c) 15/8 (d) 25/4 (e) is undefined

$$4 \log_2 x$$

X.5 If 2 = $3x^2$ then x = (a) $4(3)^{1/2}$ (b) 3 (c) $3^{1/2}$
(d) $42^{1/2}$ (e) $6^{1/2}/3$