1) Solve for x:
$$\frac{3x+2}{3-x} = 7$$
.

A) 4.75

B) 5.75

C) 2.3 D) 1.9

2) Find the sum of the reciprocals of the solutions to the equation $8x^2 - 7x + 1 = 0$.

A) 7

B) -7 C) 7/8

D) -8/7

E) NOTA

3) Solve for $r: \frac{4}{r^4} \le 64$.

 $-1/2 \le r \le 1/2$ B) $r \le -1/2$ or $r \ge 1/2$ $-2 \le r \le 2$ D) $r \le -2$ or $r \ge 2$

C) $-2 \le r \le 2$

E) NOTA

4) Find the sum of all real x which satisfy $\frac{3}{3-r^{10}} = \frac{4}{4+r^{10}}$.

A) 4/3

B) 12

C) -1 D) 0

E) NOTA

5) Find all real y such that $\frac{|y|}{(|y|+1)(y-1)} = 1$.

A) $\frac{1-\sqrt{5}}{2}$ B) $\frac{1+\sqrt{5}}{2}$ C) $\frac{3+\sqrt{5}}{2}$ D) $\frac{3-\sqrt{5}}{2}$

NOTA

6) Find the largest integer *n* that satisfies $\frac{3}{\left|3 - \frac{n}{7}\right|} \ge 4$.

A) 23

B) 25

C) 26

D) 28

E) NOTA

7) How many distinct positive values of y satisfy $27^y - 9^{y+1} + 3^{y+1} = 1$?

0 A)

B) 1

C) 2

D) 3

E) NOTA

8) For how many positive integers k does there not exist a pair of nonnegative integers (m,n) such that 3m + 7n = k?

B) 6

C) 7

D) 8

E) NOTA

9) Solve for x:
$$\frac{x}{x-2} + \frac{1}{x-1} \ge 1$$
.

A)
$$x < 1, \frac{4}{3} \le x < 2$$

B)
$$x \le 1, \frac{4}{3} \le x \le 2$$

A)
$$x < 1, \frac{4}{3} \le x < 2$$
 B) $x \le 1, \frac{4}{3} \le x \le 2$ C) $x \ge 2, \frac{4}{3} \ge x \ge 1$

D)
$$x > 2, \frac{4}{3} \ge x > 1$$

10) How many integers x satisfy both $3x^2 \le 307$ and $4x^3 \le 37$?

11) What is the area contained in the intersection of the graphs of: $|x| + |y| \ge 2$ and $x^2 + y^2 \le 4$?

12) Let r, s, and t be the solutions to the equation $x^3 - 16x^2 + 67x - 70 = 0$, where r > s > t. Find r-s-t.

Let r, s, t, u be the solutions of

$$(x-1)(x-2)(x-3)(x-4)=0$$

and let a, b, c, d be the solutions of

$$(y-5)(y-6)(y-7)(y-8) = 0$$
.

Find the maximum possible value of au + bt + cs + dr.

14) If r, s, t are the solutions to the equation $4x^3 - 5x^2 - 6x + 8 = 0$, find $r^2s^2 + s^2t^2 + r^2t^2$.

15) How many sets of integer solutions are there to:

$$3x^{2} - 2y^{2} + z^{2} = 37$$

$$-2x^{2} + 3y^{2} - 4z^{2} = -108?$$

$$-4x^{2} - y^{2} + z^{2} = 9$$

- A) 2
- B) 4
- C) 6
- D) 8
- E) NOTA

16) Find the sum of the ninth powers of the six sixth roots of -2.

- A) -2
- B) 0
- C) $-12\sqrt{2}$ D) $12\sqrt{2}$

17) What is the smallest possible value of $x^4 + 4x^3 + 7x^2 + 6x + 9$ for real values of x?

- A)
- B)
- D) 9
- E) NOTA

18) For how many real values of y is $10^y - 9^y - 8^y = 137$?											
A)	0	B)	1	C)	2	D)	infinitely	many	y E)	NOTA	
19) What is the smallest possible value of $32n^2-127n+14$ for integer values of n ?											
A)	-114	B)	-81	C)	-144	D)	14	E)	NOTA		
20)	20) How many quadratic expressions of the form ax^2+bx+c have integer roots, integer coefficients, and $a=1$, $5>b,c>-5$?										
A)	19	B)	21	C)	25	D)	27	E)	NOTA		
21)	21) Find $f(2)$ if $f(1/x) - x^2 = (1-x)f(x)$.										
A)	-3/4	B)	-3/2	C)	3/2	D)	3/4	E)	NOTA		
22) Given that $a_1, a_2, a_3,, a_{10}$ are positive integers such that $\sum_{i=1}^{10} \frac{1}{a_i} \ge 2.3$, what is the largest possible value of $\min(\{a_i\})$, which is defined to be the smallest member of the set $\{a_1, a_2, a_3,, a_{10}\}$?											
A)	3	B)	4	C)	5	D)	6	E)	NOTA		
23) Given that $f(x) = \frac{x}{x+1}$, then solve for x : $f(f(f(f(f(f(x)))))) = 1$.											
A)	1/5	B)	-1/5	C)	1	D)	no solutio	n	E) NOT	ГА	
24) It takes 8 people 5 days to build 3 huts. How many days does it take 7 people to build one hut if all seven start on work on the first day and one person quits at the end of each day?											
A)	2 1/3	B)	2 1/15	C)	1 19/21	D)	2 1/21	E)	NOTA		
25) When factored into as many polynomials as possible of degree one or greater with real coefficients, how many factors does x^7+1 have?											
A)	2	B)	4	C)	6	D)	7	E)	NOTA	1)	
 26) If xⁿ + a = 0 has multiple distinct real solutions x for positive integer n and real number a, what must be true about n and/or a? I) a > 0 II) a < 0 III) n is even IV) n is odd 											
A)	II and III	toget	her B)	Land	d IV togeth	ier	C) Land	I III to	ogether	D) Honly E) NOTA	

- 27) Given that $\sum_{i=1}^{6} ia_i = 36$ and all a_i are positive, what is the largest possible value of $\prod_{i=1}^{6} a_i$?
- A) 64.8
- B) 66.4
- C) 68.6 D) 72.2
- 28) If $y = \sqrt{2x^2 + 5x 3}$ and y = k(2x 1), then one solution is (x, y) = (1/2, 0) for any k. Find the value of x in terms of k for $y \neq 0$.
- A) $x = k^2 3$ B) $x = \frac{7k}{2k^2 1}$ C) $x = \frac{k^2}{2k^2 1}$ D) $x = \frac{k^2 + 3}{2k^2 1}$ E) NOTA

29) Find x + y + z if

$$x\sqrt{y} = 216\sqrt{3}$$

$$y\sqrt{z} = 240\sqrt{6}$$

$$z\sqrt{x} = 450\sqrt{6}$$

- A) 248
- B) 252

- C) 256 D) 262 E) NOTA
- 30) Find the sum of all real x which satisfy $x^6 + x^4 115x^3 + x^2 + 1 = 0$.
- A) 0
- B) 115
- C) 3
- D) 5
- E) NOTA