Note: For each of the following questions, answer E, NOTA, means "None of the Above."

- 1. $\lim_{h\to 0} \frac{\cos\left(\frac{\pi}{2}+h\right)}{h}$ is
 - A. 1
- B. 0
- C. -1
- D. nonexistent
- E. NOTA

- 2. $\int_0^1 \frac{x dx}{x^2 + 1}$ is equal to
- A. $\frac{\pi}{4}$ B. $\ln \sqrt{2}$ C. $\frac{1}{2}(\ln 2 1)$ D. $\ln 2$ E. NOTA
- 3. Let $F(x) = \int_0^x \frac{10}{1+e^t} dt$. Which of the following statements are true?
 - I. F'(0) = 5
- II. F(2) < F(6)
- III. F is concave upward for all x.

- A. I only
- B. II only
- C. III only
- D. I and II
- E. NOTA
- 4. The base of a solid is the region bounded by the parabola $y^2 = 4x$ and the line x = 2. Each plane section perpendicular to the x-axis is a square. The volume of the solid is
 - A. 6
- B. 8
- C. 10
- D. 16
- E. NOTA

- 5. If $x = \sqrt{1-t^2}$ and $y = \sin^{-1} t$, then $\frac{dy}{dx}$ equals
 - A. $-\frac{\sqrt{1-t^2}}{t}$ B. -t C. $\frac{t}{1-t^2}$

- D. 2 E. NOTA

- 6. The area of the largest isosceles triangle that can be drawn with one vertex at the origin and with the others on a line parallel to and above the x-axis and on the curve $y = 27 - x^2$ is
 - A. 108
- B. 27 C. $12\sqrt{3}$ D. 3
- E. NOTA

- 7. $\int_{\pi/6}^{\pi/2} \cot x \, dx =$
- A. $\ln \frac{1}{2}$ B. $\ln 2$ C. $-\ln (2 \sqrt{3})$ D. $\ln (\sqrt{3} 1)$
- E. NOTA

- 8. Find the slope of the curve $r = \cos 2\theta$ at $\theta = \frac{\pi}{6}$.
 - A. $\frac{\sqrt{3}}{7}$ B. $\frac{1}{\sqrt{3}}$ C. $\sqrt{3}$
- **D**. 0
- E. NOTA
- 9. The curve $x^3 + x \tan y = 27$ passes through (3, 0). Use local linearization to estimate the value of y at x = 3.1. The value is

- A. -2.7 B. -0.9 C. 0 D. 0.1 E. NOTA
- 10. The coefficient of the x^2 term in the Taylor polynomial for $y = x^{2/3}$ around x = 8 is
 - A. $-\frac{1}{144}$ B. $-\frac{1}{72}$ C. $-\frac{1}{9}$ D. $\frac{1}{144}$

- E. NOTA
- 11. The equation of the tangent to the curve $2x^2 y^4 = 1$ at the point (-1, 1) is
 - A. y = -x

- B. y = 2 x C. 4y + 5x + 1 = 0
- D. x 2y + 3 = 0
- E. NOTA

- 12. A curve is given parametrically by the equations $x = 3 2 \sin t$ and $y = 2 \cos t 1$. The length of the arc from t = 0 to $t = \pi$ is
 - A. $\frac{\pi}{2}$
- B. π C. 2 + π
- D. 2π
- E. NOTA
- 13. The only function that does not satisfy the Mean Value Theorem on the interval specified is
- A. $f(x) = x^2 2x$ on [-3, 1] B. $f(x) = \frac{1}{x}$ on [1, 3] C. $f(x) = x^{2.3}$ on $\left[\frac{1}{2}, \frac{3}{2}\right]$
- D. $f(x) = x + \frac{1}{x}$ on [-1, 1]
- E. NOTA
- 14. A cylindrical tank is partially full of water at time t = 0, when more water begins flowing in at a constant rate. The tank becomes half full when t = 4, and is completely full when t = 12. Let h represent the height of the water at time t. During which interval is $\frac{dh}{dt}$ increasing?
- A. 0 < t < 4 B. 0 < t < 8 C. 0 < t < 12

- D. 4 < t < 12 E. NOTA
- 15. $\int_{1}^{2} \frac{dx}{\sqrt{4-x^{2}}}$ is
 - A. $-\frac{\pi}{3}$ B. $\frac{\pi}{6}$
- C. $\frac{\pi}{4}$
- D. $\frac{\pi}{3}$
- E. NOTA

- 16. The area inside $r = 3 \sin \theta$ and outside $r = 1 + \sin \theta$ is given by
 - A. $\int_{\pi/2}^{\pi/2} \left[9\sin^2\theta (1+\sin\theta)^2 \right] d\theta$
 - B. $\int_{-\pi}^{\pi/2} (2\sin\theta 1)^2 d\theta$

 - C. $\frac{1}{2} \int_{\pi/6}^{5\pi/6} (8\sin^2\theta 1) d\theta$ D. $\frac{9\pi}{4} \frac{1}{2} \int_{\pi/6}^{5\pi/6} (1 + \sin\theta)^2 d\theta$
- E. NOTA

- 17. $\lim_{x\to\infty} x^{1/x}$ is
 - A. 0
- B. 1
- C. e
- D. ∞
- E. NOTA

18. Which equation has the slope field shown below?

- A. $\frac{dy}{dx} = \frac{5}{y}$ B. $\frac{dy}{dx} = \frac{5}{x}$ C. $\frac{dy}{dx} = \frac{x}{y}$ D. $\frac{dy}{dx} = 5y$ E. NOTA

- 19. Suppose the function f is both increasing and concave up on [a, b]. Then, using the same number of subdivisions, and with L, R, M, and T denoting respectively Left, Right, Midpoint, and Trapezoid sums, it follows that
 - A. $R \le T \le M \le L$
- B. $R \le M \le T \le L$ C. $L \le T \le M \le R$

- D. $L \le M \le T \le R$
- E., NOTA
- 20. Let $\int_{0}^{x} f(t)dt = x \sin \pi x$. Then f(3) =

- A. -3π B. -1 C. 1 D. 3π
- E. NOTA

- 21. If f'(x) = 2f(x) and f(2) = 1, then f(x) =

 - A. e^{2x-4} B. $e^{2x} + 1 e^4$ C. e^{4-2x} D. e^{2x+1}
- E. NOTA

22.
$$\int_0^6 f(x-1)dx =$$

- A. $\int_{-1}^{7} f(x) dx$ B. $\int_{-1}^{5} f(x) dx$ C. $\int_{-1}^{7} f(x+1) dx$ D. $\int_{1}^{7} f(x) dx$
- E. NOTA
- 23. Let $f(x) = x^5 + 1$ and let g be the inverse function of f. What is the value of g'(0)?
 - A -1

- B. 1 C. $\frac{1}{5}$ D. g'(0) does not exist
- E. NOTA

24. Given f' as graphed, which could be a graph of f?

- A. I only
- B. II only

III

- C. III only
- D. I and III
- E. NOTA
- 25. A particle moves on a straight line so that its velocity at time t is given by v = 4s, where s is its distance from the origin. If s = 3 when t = 0, then, when $t = \frac{1}{2}$, s equals
 - A. $1 + e^2$ B. $2e^3$ C. e^2 D. $2 + e^2$

- E. NOTA

- 26. The first quadrant region bounded by $y = \frac{1}{\sqrt{r}}$, y = 0, x = q (0 < q < 1), and x = 1 is rotated about the x-axis. The volume obtained as q → 0⁺ equals

 - A $\frac{2\pi}{3}$ B. $\frac{4\pi}{3}$ C. 2π D. 4π E. NOTA

- 27. The area of the surface generated by revolving the curve $y = \sin x$ from x = 0 to $x = \pi$ about the x-axis is
 - A. $2\pi \left(\sqrt{2} + \ln\left(1 + \sqrt{2}\right)\right)$ B. $2\pi + \ln\left(1 + \sqrt{2}\right)$ C. $2\pi + \frac{1}{2}\ln 2$

- D. $2^{3/2}(\pi + \ln 2)$
- E. NOTA
- 28. The interval of convergence of $\sum_{n=1}^{\infty} nx^n$ is

- A. (-1, 1) B. [-1, 1) C. (-1, 1] D. [-1, 1]
- E. NOTA

- 29. Which of the following series converges?

- A. $\sum \frac{1}{\sqrt[3]{n}}$ B. $\sum \frac{1}{\sqrt{n}}$ C. $\sum \frac{1}{n}$ D. $\sum \frac{1}{10n-1}$
- E. NOTA

- $30. \int \frac{x^2 + 2}{x^2 + 2x} dx =$
- A. $\ln |x| + C$ B. $\ln |x| 3 \ln |x + 2| + C$ C. $\frac{x^3}{3} \ln |x| + 2 \ln |x + 2| + C$
- D. $\ln \left| \frac{x}{(x+2)^3} \right| + x + C$
- E. NOTA