
NONE OF THE ANSWERS GIVEN IS CORRECT CHOOSE NOTA (NONE OF THESE ANSWERS).

Which of the following identities is an expression equal to the area of ΔΧΥΖ.

- B) xzsin Y
- C) $\frac{1}{2}yz\sin Y$
- D) $\frac{1}{2}xy\sin Z$
- E) NOTA

D)
$$-t^2+6t-2$$

B)
$$-36t^2 + 30t - 6$$

C)
$$-6t^2+6t-2$$

3. Which of the following graphs are even functions.

i)
$$y = 2$$

ii)
$$y = |x| - 1$$

iii)
$$y = |x - 1|$$

iv)
$$y = x^3 + x^2$$

v)
$$x^2 + y^2 = 1$$

E) NOTA

4. Which condition is sufficient for concluding that f and g are inverses of each other?

- A) f(g(x)) = g(f(x)) for all x in the domain of f and g.
- B) f(g(x)) = x for all x in the domain of g and g(f(x)) = x for x in the domain of f.
- C) f is always positive and g is always negative.
- D) f and g each pass the vertical line test.
- E) NOTA

5. A rotary sprinkler irrigates a 40° sector with a radius of 20 meters. To the nearest hundredth, what is the area of the irrigated section?

- A) 13.96 m²
- B) 27.92 m²
- C) 139.63 m²
- D) 279.26 m²
- E) NOTA

6. Evaluate $sin(\theta - 2\pi) + sin(\theta - \pi)$.

- A) 2
- B) 0

- C) -2
- D) $sin(3\theta)$
- E) NOTA

7. Express $cos(4\theta)$ as a function of $cos\theta$ only.

A) $4\cos^4\theta - 4\cos^2\theta + 1$

B) $8\cos^4\theta - 4\cos^2\theta + 1$

C) $8\cos^2\theta - 8\cos^2\theta + 1$

- D) $8\cos^4\theta 8\cos^2\theta + 1$
- E) NOTA

8. Which of the following is **NOT** a root of $x^4 + 81 = 0$.

- A) 3cis 45
- B) 3cis 135
- C) 3cis 180
- D) 3cis 225
- E) NOTA

9.	A wheel is spinning with an angular velocity of 100 rad/sec. Find the distance in cm. travelled du $\frac{1}{10}$ sec. by a point on the wheel that is 10 cm from the wheel's center.							
	A) 100 cm	B) 10 cm	C) 10π	D) 100π	E) NOTA		
10	. Find the equalit	y that is <u>NOT</u>	an identity.					
	A) $sin(\pi - \theta) = s$ D) $cos(\pi - \theta) = s$		B) $\cos(\pi + \theta) =$ E) NOTA	−cos θ	C) sin($(\pi + \theta) = \sin \theta$		
11.				ring of 20° (aff	ac Mainth M.	en turns and walks 6 k		
	course of 160°, camp.	Find, to the ne	earest thousandth	of a km., the n	nagnitude of	en turns and walks 6 k the net displacement f	m on a rom	
			:		4	·		
	A) 5.144	B) 6.188	C) 10	·	13.835	E) NOTA		
12.	Given ∆ABC wit	th $m\angle A = 30^\circ$, b	= 12, and a = 8.	Find all possib	le solutions f	or <i>m∠B</i> he nearest ter	nth.	
	A) 19.5°	B) 41.4°	C) 48.6° and 13	1. 4 ° D)	48.6°	E) NOTA		
13.	A vertical tree ca sight to the sun a	asts a shadow o and the horizont	of 10 m at one tim al is doubled. Fir	e and 3.2 m at d the height of	a later time, v	when the angle of the	line of	
	A) 6 m	B) 6.3 m	C) 9.5 m	•	31.0 m	E) NOTA		
14.	Find the next ter	m in the followi	ng harmonic sequ	ence $\frac{1}{6}$, $\frac{1}{18}$,	1 ? .		es Maria	
	A) $\frac{1}{60}$	B) $\frac{1}{90}$	C) $\frac{1}{42}$	D)	1 45	E) NOTA		
15.	Simplify the follo	wing expression	n to a single trigor	nometric function	on: $\frac{\sin 2\alpha}{\sin \alpha}$	$\frac{\cos 2\alpha}{\cos \alpha}$	i i	
	A) cosα	B) secα	C) csca	D)	$\cos^2 \alpha$	E) NOTA		
16. If $\sin \alpha = \frac{3}{5}$ and $\cos \beta = -\frac{5}{13}$ where $90^\circ < \alpha < 180^\circ$ and $180^\circ < \beta < 270^\circ$. Find $\cos(\alpha + \beta) = -\frac{5}{13}$								
	A) $-\frac{16}{65}$	B) $-\frac{56}{65}$	C) $\frac{16}{65}$	D)	56 65	E) NOTA		
17. A	Which of the follow)	owing graphs is	the graph of $y = B$	sin <i>x</i> – 1				
			- ,	N			2	
						e Portugues de Maria		
	<u> </u>						4 ·	
<u>~</u> ;		·			a significant			
C)			D)			E)NOTA		
						n i de la companya d La companya de la companya de	e fage into	
				1/1				

18. Find the su	ım of the solutions	s of $\frac{1-\cos x}{\sin x} = 1$, where	$ eq 0 \le x < 2\pi $					
A) $\frac{\pi}{2}$	Β) π	C) $\frac{3\pi}{2}$	D) 2π	E) NOTA				
19. How many	leaves does the g	raph $r = 3\cos 4\theta$ conta	ain?					
А) З	B) 4	C) 6	D) 8	E) NOTA				
20. Evaluate co	$\int S \left[Arc \sin \frac{\sqrt{2}}{2} + \pi \right]$.1	en e					
A) $\frac{1}{2}$	B) $-\frac{\sqrt{2}}{2}$	C) $\frac{\sqrt{2}}{2}$	D) $\frac{\sqrt{3}}{2}$	E) NOTA				
21. The sides of nearest hund	a triangle are 4, 6 dredth).	3 and 6. Find the length	of the altitude to t	he longest side (round to the				
A) 2.90	B) 36	C) .97	D) .12	E) NOTA				
22. To the neare trapezoid sh	st hundredth, find own.	the area of the	18	m				
A) 86.53 B) 173.06 C) 237.74 D) 475.48 E) NOTA			11 m /70 28	m				
23. Consider 8 at superior to the	heletes getting re e rest and are sur	ady to run a 100-meter- e to be the top three, in	dash race. If 3 of how many ways ca	the athletes are clearly				
A) 120	B) 360	C) 720	D) 40,320	E) NOTA				
24. Solve $_{n+5}C_1 =_n C_2$. The third letter in the word for the number n is $\underline{?}$.								
A) e	B) u	C) v	D) x	E) NOTA				
25. What is the 4th	What is the 4th term of the expansion of (2c - b) ¹⁰ ?							
A) $(2c)^7$	•	B) $(2c)^7(-b)^3$		C) $10 \cdot 9 \cdot 8(2c)^7(-b)^3$				
D) $\frac{10 \cdot 9 \cdot 8}{3} (2c)$	$^{7}(-b)^{3}$	E) NOTA		o, 1.0 0 0 0(20) (-b)				
26. How many zer	oes are at the end	i of 2000! ?						
A) 400	B) 496	C) 499	D) 1000	E) NOTA				
27. Find the area of		drilateral with vertices (3		and (-4 -1)				
A) 63	B) 31.5	C) 19		E) NOTA				

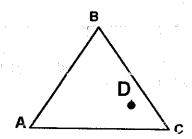
28. Evaluate:
$$([(i^3+1)^4+(i^3-1)^4]^4)^{\frac{1}{2}}$$

- A) 0
- B) 2i
- C) 8
- D) 64
- E) NOTA

29. Express the polar equation $r^2 = \cos 2\theta$ as a cartesian equation.

A)
$$(x^2 + y^2)^2 = x - y$$

B)
$$(x^2 + y^2)^2 = x^2 - y^2$$


C)
$$(x^2 + y^2)^3 = x^2 - y^2$$

D)
$$(x^2 + y^2)^3 = x^2 + y^2 + 1$$

30. Point D is located in the interior of equilateral $\triangle ABC$. Perpendiculars are drawn to the three sides from D. If AB = 8, find the sum of the lengths of the perpendiculars.

- A) 4
- B) 8√3
- C) 16√3
- D) $4\sqrt{3}$
- E) NOTA

40 fr

