January Regional Calculus Individual Test

For all questions, "E. NOTA" means none of the above answers is correct. Unless otherwise stated, assume all numbers are real.

- 1. Let $f(x) = 3x^2 \cos(x)$. Find $f'(\pi)$.
- A. $6\pi 1$
- B. 6π
- C. $3\pi^2 + 1$
- D. π^3
- E. NOTA
- 2. Find the slope of the line tangent to the graph of $xy^3 + 3y^2 2x^2 18 = 0$ at the point (3,2).
- A. -12
- B. $-\frac{1}{12}$
- C. $\frac{1}{12}$
- D. 12
- E. NOTA
- 3. Evaluate: $\lim_{x\to 2^+} e^{\sqrt{x^2-4}}$
- A. 0
- B. e^{-1}
- C. e
- D. Limit does not exist
- E. NOTA
- 4. Find the maximum value of $y = xe^{-x}$ on $[-\ln 2, \ln 2]$.
- A. $\ln \frac{1}{4}$
- B. $\frac{1}{e}$
- C. $\ln \sqrt{2}$
- D. fattains no maximum value
- E. NOTA

5. Suppose f(x) is continuous at x = a. Which of the following are true?

- I. f(a) exists
- II. $\lim_{x\to a} f(x)$ exists
- III. f'(a) exists
- IV. For every $\varepsilon > 0$ there exists $\delta > 0$ such that if $|x-a| < \delta$, then $|f(x)-f(a)| < \varepsilon$
- A. I only
- B. I and II only
- C. I, II, and IV only
- D. I, II, III, and IV
- E. NOTA

6. Find the radius of the largest neighborhood about x = 3 such that |3x-9| < .01. Round your answer to the nearest thousandth.

- A. 0.001
- B. 0.002
- C. 0.003
- D. 0.004
- E. NOTA

7. Evaluate:
$$\lim_{x \to -\infty} \frac{\sqrt{4x^2 + 5x + 1}}{x + 1}$$

- A __
- B. 0
- C. 2
- D. ∞
- E. NOTA

8. How many asymptotes does the graph

$$f(x) = \frac{x^3 + 3x^2 - 4x}{x^3 + x^2 - x - 1}$$
 have?

- **A.** (
- B. .
- C. 3
- D. 4
- E. NOTA

- 9. Find the equation of the line tangent to the graph $f(x) = \sin(x)\tan(x)$ when $x = \frac{\pi}{4}$.
- A. $2x + 3y\sqrt{2} = \sqrt{2}\left(\frac{3\pi}{4} 1\right)$
- B. $2x-3y\sqrt{2} = \sqrt{2}\left(\frac{3\pi}{4} 1\right)$
- C. $3x\sqrt{2} + 2y = \sqrt{2}\left(\frac{3\pi}{4} 1\right)$
- D. $3x\sqrt{2} 2y = \sqrt{2}\left(\frac{3\pi}{4} 1\right)$
- E. NOTA
- 10. Lauren wishes to enclose a garden with a rectangular wooden fence. To conserve wood, she decides to use one side of his house as a side of the rectangle. Lauren only has enough wood to build 24 feet of fence. Find the maximum area enclosed by the fence. Express your answer in square feet.
- A. 36
- B. 48
- C. 64
- D. 72
- E. NOTA
- 11. Which of the following statements is **false** concerning a function f(x) defined on [a,b]?
- A. If f(x) is convex on (a,b), then f(x) is continuous on (a,b)
- B. f(x) attains its maximum value on [a,b]
- C. If f(x) is differentiable on (a,b), then f(x) is continuous on (a,b)
- D. If f(x) is differentiable on [a,b] and f(a) = f(b), then f(x) has a critical point in (a,b)
- E. NOTA

- 12. A ball is dropped from the top of a 100 foot building. If the acceleration due to gravity is $-32 \frac{\text{ft}}{\text{sec}^2}$, how long in seconds will it take for the ball to hit the ground?
- A. 1
- B. 2
- C. 3
- D. 4
- E. NOTA
- 13. For what values of x is $y = \frac{x^2 + 3x + 1}{x^2 + 1}$ increasing?
- A. x = -1 and x = 1

B.
$$\left(\frac{-3-\sqrt{5}}{2}, \frac{-3+\sqrt{5}}{2}\right)$$

- C. (-1,1)
- D. $(-\infty,-1)\cup(1,\infty)$
- E. NOTA
- 14. At what values of x does the graph of $f(x) = x^5 10x^3 + 20x^2 15x + 3$ change concavity?
- A. x = -3 and x = 1
- B. x = -2 and x = 1
- C. x = -3
- D. x = -2
- E. NOTA
- 15. Suppose f(x) and g(x) are continuous at x = 2, $\lim_{x \to 2} f(x) = 2$, and $\lim_{x \to 2} g(x) = 0$.

Evaluate
$$\lim_{x\to 2} (f(x)+g(x))^{g(f(x))}$$
.

- A. 0
- B. $\frac{1}{2}$
- **C**. 3
- D. Cannot be determined
- E. NOTA

16. Which of the following functions is continuous at x=3?

A.
$$f(x) = \begin{cases} 1, & x \neq 3 \\ 0, & x = 3 \end{cases}$$

B.
$$f(x) = \begin{cases} \frac{|x-3|}{x-3}, & x \neq 3 \\ 1, & x = 3 \end{cases}$$

C.
$$f(x) = \begin{cases} \frac{x^3 - 3x^2 - 7x + 21}{x - 3}, & x \neq 3 \\ 2, & x = 3 \end{cases}$$

D.
$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq 3 \\ 3, & x = 3 \end{cases}$$

E. NOTA

17. Brianna, the owner of a widget company, has determined that the cost of producing x widgets is given by $C(x) = 500 + 10x + \frac{1000}{x}$ if x > 0. How many widgets should Brianna produce if she wants to minimize her costs?

- A. 10
- B. 240
- C. 470
- D. 700
- E. NOTA

18. Suppose f(x) is continuous on [a,b] and differentiable on (a,b). Then there exists $c \in (a,b)$ such that the line tangent to the graph f(x) at x = c is parallel to the secant line through (a, f(a)) and (b, f(b)). This is a geometric interpretation of which of the following theorems?

- A. Mean Value Theorem
- B. L'Hôpital's Rule
- C. Taylor's Theorem
- D. Fundamental Theorem of Calculus
- E. NOTA

19. If
$$-x^2 \le f(x) \le x^2$$
 for all x, what is $\lim_{x\to 0} f(x)$?

- A. 0
- B. 1
- C. ∝
- D. Cannot be determined
- E. NOTA

20. Evaluate:
$$\frac{d}{dx} \left(\ln \left| \cos \left(x^2 \right) \right| \right)$$

- A. $sec(x^2)$
- B. $-\tan(x^2)$
- C. $-2x\tan(x^2)$
- $D. 2xe^{-\sin(x^2)}$
- E. NOTA

21. Find the nth derivative of $f(x) = \frac{1}{x}$, where *n* is a whole number.

$$A. \frac{\left(-1\right)^n n!}{r^{n+1}}$$

B.
$$\frac{\left(-1\right)^{n}n!}{x^{n}}$$

$$C. \frac{\left(-1\right)^n \left(n+1\right)!}{x^n}$$

$$D. \frac{\left(-1\right)^{n+1} n!}{x^n}$$

E. NOTA

22. Find the maximum value of

$$f(x) = \frac{-2x^3 + 6x^2 - 4x}{x - 1}.$$

- A. 0
- B. 1
- C. 2
- D. f attains no maximum value
- E. NOTA

23. Let $f(x) = \begin{cases} x^2 + ax + 2, & [0, a] \\ 3 - x, & (a, 4] \end{cases}$ where

0 < a < 4. For which value of a is f(x)continuous on [0,4]?

- E. NOTA
- 24. Evaluate: $\lim_{x\to 0} (1+x)^{1/x}$
- A. 0
- B. e^{-1}
- C. 1
- D. *e*
- E. NOTA
- 25. Suppose f(x) = 0 when x is rational and f(x)=1 when x is irrational. For what values of x is f(x) continuous?
- A. x = 0
- B. $\{x \mid x \text{ is rational}\}\$
- C. $\{x \mid x \text{ is irrational}\}\$
- D. f(x) is nowhere continuous
- E. NOTA
- 26. Given $\sqrt{2187} = 3$, use differentials to approximate $\sqrt{2005}$. Round your answer to the nearest thousandth.
- A. 2.962
- B. 2.963
- C. 2.964
- D. 2.965
- E. NOTA

- 27. Let $f(x) = x \cdot [x]$, where [x] is the greatest integer less than or equal to x. What is f'(2)?
- A. 0
- B. 1
- C. 2
- D. 4

E. NOTA

- 28. Evaluate: $\lim_{x\to 0} \frac{\ln(4+x) \ln 4}{r}$
- A. 0
- C. ln 4

- 29. Evaluate: $\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{n^3}$

- C. 1
- D. Limit does not exist
- E. NOTA
- 30. Find the maximum value of

$$f(x) = \frac{x}{\sqrt{x^3 + 1}}.$$

- D. $\sqrt[3]{2} \cdot \sqrt{3}$
- E. NOTA