For each of the questions below, NOTA means none of the other answers provided are correct.

1.	Given f	Given $f(x) = \sin^2 x$, for what value of x (in radian measure) is $f'(2x) = 0$					
	A) 0	B) $\frac{\pi}{6}$	C) $\frac{\pi}{4}$	D) $\frac{\pi}{3}$	E) NOTA		
			7		Market production of the		

The region bounded by the line y = 4 and the curve $y = x^2$ is cut into two regions 2. of equal area by the line y = k. What is the value of k?

A) 2

B) $2\sqrt{2}$ C) $2\sqrt[3]{2}$ D) $2\sqrt[4]{2}$ E) NOTA

Given $f(x) = x^n$, where n is a natural number, What is the n^{th} derivative of 3. Charles of the Carried Mark Connection

A) n!x B) $(n-1)!x^{n-1}$ C) n! D) 0 E) NOTA

Given an odd continuous function f and the fact $\int_{0}^{\infty} f(x) dx = N$, what is the value 4. of $\int_{0}^{2a} f(x) dx$? C) Cannot be determined D) -2N E) NOTA

A) 2N

B)0

At what x value is the line tangent to $f(x) = \sqrt{3x+1}$ parallel to the line 5. 2x-3y=6?(A) $\frac{1}{6}$ B) $\frac{9}{4}$ C) $\frac{65}{48}$ D) $\frac{81}{64}$ E) NOTA

6. Evaluate $\int_{0}^{\pi} (\sin^{2} x + \cos^{2} x) dx$ A) 0 B) $\frac{\pi}{2}$ C) π D) $\frac{5\pi}{4}$ E) NOTA

For each of the questions below, NOTA means none of the other answers provided are correct.

7.	Find the value c guaranteed	by the mean value	e theorem for	$f(x) = 4\sqrt{x}$	+ 3a
	on the interval [1,4].			- .	

- A) There are none B) $\frac{3}{2}$ C) $\frac{9}{4}$ D) $\frac{27}{8}$

- E) NOTA

8. Evaluate
$$\lim_{h\to 0} \frac{\cot\left(\frac{\pi}{4}+h\right)-1}{h}$$

- A)-1
- B)-2
- C) 1
- D) 2
- E) NOTA

9. Find the equation of the line normal to
$$y = \frac{3}{x^2}$$
 at $x = 2$.

- A) $y \frac{3}{4} = \frac{3}{4}(x-2)$ B) $y + \frac{3}{4} = \frac{-3}{4}(x-2)$
- C) $y \frac{3}{4} = \frac{-4}{3}(x-2)$ D) $y \frac{3}{4} = \frac{4}{3}(x-2)$

10. Evaluate
$$\lim_{h\to 0} \frac{\sin^2(5x)}{2x^2}$$

E) NOTA

- A) 0 B) $\frac{2}{5}$ C) 1 D) $\frac{5}{2}$ E) NOTA

11. How many asymptotes does the graph of the function
$$f(x) = \frac{x^3 - 2x}{x^2 - 4}$$
 have?
A) 0 B) 1 C) 2 D) 3 E) NOTA

- A) 0
- B) 1

- E) NOTA

12. A spherical balloon is being inflated at a constant rate of
$$3 \frac{cm^3}{min}$$
. What is the rate of change of the surface area at the instant that the volume of the balloon is $36\pi cm^3$?

- A) $\frac{3}{4}$ cm²/min
- B) $\frac{4}{3}$ cm²/min C) 2 cm²/min

- D) $2\pi^{cm^2/min}$
- E) NOTA

For each of the questions below, NOTA means none of the other answers provided are correct.

13. Simplify
$$\frac{f(x+h)-f(x)}{h}$$
 for $f(x)=\frac{1}{x+1}$

A)
$$\frac{1}{(x+1)(x+h+1)}$$

A)
$$\frac{1}{(x+1)(x+h+1)}$$
 B) $\frac{-1}{(x+1)(x+h+1)}$

C)
$$\frac{-x}{(x+1)(x+h+1)}$$
 D) $\frac{x}{(x+1)(x+h+1)}$

D)
$$\frac{x}{(x+1)(x+h+1)}$$

E) NOTA

14. Evaluate
$$\lim_{h\to 0} \frac{1-\cos^2 5h}{h}$$

- A) undefined
- C) 1
- D) 0

E) NOTA

15. Find the value of
$$k$$
 which makes the function $f(x) = \begin{cases} 0.4x + k^2 & x < 1 \\ kx + 2.4 & 1 \le x \end{cases}$ continuous.

- A) -2
- B)-1

- Given $f'(x) = \sin(x^2)$, then the graph of y = f(x) is increasing on which of 16. the following intervals?
- A) $(0,\pi)$ B) $(\pi,2\pi)$ C) $(-\sqrt{\pi},\sqrt{\pi})$
- D) $(\sqrt{\pi}, \sqrt{2\pi})$ E) NOTA
- For $f(x) = x^2 \frac{1}{\sqrt{x}}$ what is the x-coordinate of the point of inflection?

A)
$$\left(\frac{3}{4}\right)^{2/5}$$

- (A) $\left(\frac{3}{4}\right)^{\frac{2}{5}}$ (B) $\left(\frac{3}{8}\right)^{\frac{2}{5}}$ (C) $\left(\frac{3}{8}\right)^{\frac{3}{2}}$ (D) 1 E) NOTA
- The location function of a particle in motion is $s(t) = 2t^3 9t^2 + 5$. What is 18. the value of a(t), the acceleration function, when velocity is first zero? Assume that t>0.
 - A) 18
- B)0
- C) 3
- D) 18

For each of the questions below, NOTA means none of the other answers provided are correct.

The base of a solid in quadrant I is bounded by the curve $y = 4 - x^{2/3}$. If each cross section perpendicular to the x-axis is a square with one edge in the xy-plane, the volume of the resulting solid is

A)
$$\frac{1024}{35}$$
 B) $\frac{2896}{35}$ C) $\frac{328}{3}$ D) $\frac{2560}{3}$ E) NOTA

- 20. Given the following facts f(2) = 6, f'(2) = 4, f''(2) = 2, evaluate $\frac{d^2(f^3(x))}{dx^2} \text{ at } x = 2$ A) -360 B) 36 C) 612 D) 792 E) NOTA
- 21. Let $f(x) = ax^4 + bx^2$ where ab < 0. Which of the following is true?
 - A) f has three critical values
 - B) f has two points of inflection
 - C) There is a point of inflection when x = 0
 - D) f has two roots
 - E) NOTA
- 22. $f(x) = -x^3 + Ax^2 + Bx + 30$. Given the facts that f'(x) > 0 on (-2,10) and f'(4) = 0, find A and B

A)
$$A = -12$$
, $B = -60$

B)
$$A = -12$$
, $B = -36$

C)
$$A = 12$$
, $B = -60$

D)
$$A = 12$$
, $B = 60$

- E) NOTA
- 23. Given the graph of a continuous function y = f(x) such that f(a) = c and f(b) = d. Geometrically, the average rate of change of f(x) on [a,b] is represented by
 - A) The length of a horizontal line segment
 - B) The length of a vertical line segment
 - C) An area
 - D) Slope of the segment joining (a,c) and (b,d)
 - E) NOTA

For each of the questions below, NOTA means none of the other answers provided are correct.

24.	Let $f(x)$ be a function such that	f(2)=3. Which of the following statements
	MUST be true?	

I)
$$\lim_{x\to 2} f(x) = 3$$

- II) f(x) is continuous at x=2
- III) f(x) is differentiable at x = 2
- A) I only.
- B) II only
- C) III only
- D) all must be true
- E) NOTA

25.
$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & x \neq 2 \\ k & x = 2 \end{cases}$$
 If $f(x)$ is continuous, then $k = 1$

- A) 0
- B) 2

- E) NOTA

26. Find the equation of the line tangent to
$$x^2 + 3y^2 = 4$$
 at (1,1)

A)
$$y+1=\frac{-1}{3}(x+1)$$

B)
$$y-1=\frac{-x}{3y}(x-1)$$

C)
$$x + 3y = 2$$

D)
$$y-1=\frac{-1}{3}(x-1)$$

E) NOTA

- A) 40 ft
- B) 200 ft
- C) 500 ft
- D) 20,000 ft E) NOTA

- A) 7.69
- B) 12
- C) 12.21
- D) 12.68
- E) NOTA

For each of the questions below, NOTA means none of the other answers provided are correct.

- The height of fluid in a cylinder with a radius of 4 cm is increasing at the rate of 29. 2^{cm} Find the rate of change of the volume of fluid in the cylinder with respect to time when the height of the fluid is 10 cm.
 - A) $16\pi \frac{cm^3}{\min}$ B) $\frac{1}{16\pi}\frac{cm^3}{\min}$ C) $\frac{5}{8\pi}\frac{cm^3}{\min}$
- D) $160\pi^{cm^3}/_{\text{min}}$ E) NOTA
- Use the trapezoidal rule with two equal subintervals to approximate, correct to 30. three decimal places, $\int \sin \sqrt{x} dx$
 - A) 0.042
- B) 0.692
- C) 0.915 D) 0.928
- E) NOTA