If none of the answers is correct choose e) NOTA.

- 1. Find the derivative of $\tan^3(5x)$.
- a) $15\sec^2(5x)$ b) $15\sec^2(5x)\tan^2(5x)$ c) $15\sec^6(5x)$ d) $15\tan^2(5x)$
- e) NOTA

- 2. g'(x) = h(x), $f(x) = x^3$. $\frac{d}{dx}[f(g(x))] =$

- a) $3x^2h(x)$ b) $3x^2g(x)$ c) $3g^2(x)h(x)$ d) $x^3h(x) + 3x^2g(x)$ e) NOTA

- 3. $g(x) = \lim_{h \to 0} \frac{2^{(x+h)^2} 2^{x^2}}{h}$. Find g(1).
- a) 4ln2
- b) In4
- c) 4
- d) ln8
- e) NOTA
- 4. $f(x) = \frac{(x+m)(x-n)}{(x-n)^2}$. What are the equations of the asymptotes of the graph of f?
- a) x = -m, x = n, x = r b) x = r, y = -mn c) x = r, y = 1 d) $x = r^2$, y = 11

- 5. $y = \frac{5}{3 + v^2}$. $\frac{dy}{dx} = \frac{1}{3 + v^2}$

- a) $\frac{-10x}{3+x^2}$ b) $\frac{5}{2x}$ c) $\frac{-5x}{(3+x^2)^2}$ d) $\frac{-5}{(3+x^2)^2}$
- e) NOTA
- 6. The line 2x + y 3 = 0 is normal to the curve $y = x^4 + k$. Find the tenths digit of sin(k).
- a) 5
- b) 6
- c) 7

d) 9

e) NOTA

- 7. $f(x) = \ln(x) + \sin(x)$. Which of the following is true at $x = \frac{\pi}{3}$?
- a) A relative maximum occurs at $x = \frac{\pi}{3}$.
- b) f is concave up

c) f is increasing.

- d) $\lim_{X \to \frac{\pi}{2}} f'(X) = \frac{3}{\pi} \frac{1}{2}$
- e) NOTA
- 8. $x + xy + 2y^2 = 6$. What is the slope of the line tangent to the curve at (2,1)?
- $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$

9. The graph of f' over [-4,4] is given. Each tick mark represents a unit of one. Which of the following statements are true?

- ii) The tangent line at x = 2 is parallel to 2x + y = 3.
- iii) f is concave up over (-4, -2) and (2, 4).
- iv) f is decreasing over (0, 4).

- b) ii, iii, iv
- c) ii, iii
- d) i, ii, iii, iv
- e) NOTA
- 10. The radius of a circle is increasing at a rate of k, k > 0. At a certain moment the rate of increase in the area of the circle is numerically twice the rate of increase in the circle at this time?
- a) $\frac{2}{k}$
- b) $\frac{2}{\pi}$
- c) 1
- d) 2
- e) NOTA

- 11. $f(x) = \sqrt{2x+1}$. f'(4) =
- a) $\frac{1}{6}$
- b) $\frac{1}{3}$
- $(c) \frac{9}{2}$
- d) 9
- e) NOTA
- 12. Use the linearization of f at $x = \frac{\pi}{4}$ to estimate f(0.7) to the nearest thousandth. $f(x) = \ln(\sec x)$.
- a) 0.226
- b) 0.261
- c) 0.265
- d) 0.271
- e) NOTA
- 13 If $f(x) = \cos(\frac{x}{2})$ in the interval $0 \le x \le \pi$, to the nearest thousandth which of the following could be the number c satisfying the conclusion of the Mean Value Theorem?
- a) 0.345
- b) 0.690
- c) 1.380
- d) 1.761
- e) NOTA

- 14. $f(x) = \begin{cases} \frac{x^2 9}{x 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$ What value of k makes f continuous?
- a) -3
- b) 3
- c) 6

- d) 9
- e) NOTA
- 15. $f'(x) = (x-3)^3 (x-2)^2$. Which of the following statements is false?
- a) f has critical values at x = 3 and x = 2.
- b) f is increasing over $(3, \infty)$.
- c) f has a minimum value occurring at x = 3.
- d) f has two extreme values.

e) NOTA

16. $f(x) = gx^2 + hx + k$. Part of the graph of the parabola f is shown to the right. Each tick mark represents a unit of one. Which of the following must be true?

- a) g > 0, h > 0, k > 0 b) g < 0, h > 0, k > 0
- c) g > 0, h < 0, k > 0
- d) g > 0, h > 0, k < 0
- e) NOTA

17. The amount of water in gallons in a tank after a drainage pipe is opened is given by $W(t) = 300(20 - t)^2$, where t is the number of minutes since the pipe is first opened. What is the average rate of change in gallons per minute during the first 6 minutes?

- a) -8, 400
- b) -10,200
- c) -61.200
- d) -87,600
- e) NOTA

18. Use differentials to approximate $\sqrt{67}$ using the fact that $\sqrt{64}$ = 8. Round your approximation to the nearest thousandth.

- a) 8.185
- b) 8.186
- c) 8.188
- d) 8.191
- e) NOTA

19. A company has a daily fixed cost of \$5000. If the company produces x units daily, then the daily cost in dollars for labor and materials is 3x. The daily cost of equipment maintenance is $\frac{x^{-}}{2,500,000}$. To the nearest unit what daily production rate minimizes the total daily cost per unit of production?

- a) 50,000
- b) 110,902
- c) 111,803
- d) 112,011
- e) NOTA

20. Let f(x) = [x], where [] denotes the greatest integer value of x. Which of the following statements are true for each integer J?

- i) $\lim_{x \to J^{-}} [x] = J 1$ ii) $\lim_{x \to J} [x] = J$ iii) For all $x, x \neq J$, f is continuous at x.
- a) i
- b) i, ii c) i, iii
- d) i, ii, iii
- e) NOTA

21. What is the equation of the tangent line to $y = \arctan(3x)$ at x = 0.

- a) 3x y = 0
- b) x y = 0 c) x 3y = 0 d) 3x + y = 0
- e) NOTA

22. $x(t) = 2\sin(t) - 3\cos(t)$, $t \ge 0$. x is the position function of a particle. To the nearest thousandth find the velocity of the particle the first time the acceleration is 0.

- a) -1.387
- b) 0.982
- c) 3.328
- d) 3.606 e) NOTA

23. $f(x) = e^{\frac{1}{x}}$. V	Which of the following	statements is false	? · · · · · · · · · · · · · · · · · · ·	
a) $\lim_{x\to 0^+} f(x) = 0$	20	b) f has no maxima of minima on its domain.		
c) f decreases or	n its domain	d) f has no infl	ection points.	e) NOTA
24. $f(0) = 2$ and 1 following must be	f' is a constant function true?	on such that $3 \le f'($	$x) \le 7 \text{ for all } x \text{ in } [0,4]$	Which of the
c) f is always con		d) f is not	continuous at $x = 2$.	-
25. There exists a	number a such that	$\lim_{x \to -2} \frac{3x^2 + ax + a}{x^2 + x - 2}$	+3 exists. Find the te	enths digit of ln a.
a) 1	b) 3	c) 6	+3 exists. Find the te	e) NOTA
The car starts at a There is a statue lowhat is the x-coor	point 100 m west and ocated 100 m east and	d 100 m north of the 150 m north of the the highway when	a parabola with its vere e origin and travels town origin. To the nearest the car's headlights fire	wards the origin.
a) 23.137	b) 29.289	c) 31.753	d) 35.265	e) NOTA
27. Which of the triangle of least are	following is the y inte ea in the first quadran	rcept of the line thre	ough the point (3,5) the	hat cuts off the
a) 7	b) $\frac{43}{5}$	c) 49/5	d) 10	e) NOTA
28. A water-skier is 4 ft. Her speed is the leaves the ramp	s a constant 30 ft/s.	ne shape of a right to To the nearest thou	riangle whose base is 1 sandth in ft/s how fast	5 ft and height is she rising as
a) 7.730	b) 8.821	c) 12.400	d) 15.000	e) NOTA
29. Which of the fo	ollowing expressions	does not have the s	ame derivative as y = 1	log5(x)?
			d) $\frac{\ln(x)}{\ln 5}$	
30. Let $f(x) = x^2 + \sqrt[3]{x-2}$. Which of the following describes the behavior of f at $x = 2$?				
a) differentiable	b) discontinuity	c) cusp	d) vertical tangent	e) NOTA