Question 1) Find the positive value for y, if:

$$x = \sqrt{12 - \sqrt{12 - \sqrt{12 - \sqrt{12 - \dots}}}}$$
$$y = x\sqrt{8 + x\sqrt{8 + x\sqrt{8 + x \dots}}}$$

Question 2) Find the simplest form for the following expression for all values of x which the expression is defined.

$$\frac{x^2 + 3x + 2}{x^2 - x - 2} \cdot \frac{x^3 - 25x}{x^2 - 2x - 35} \cdot \frac{2x^2 - 3x - 2}{x^2 - 5x} \cdot \frac{2x^2 + 5x + 2}{x^2 - 49}$$

Question 3) Find the sum of the slopes of the asymptote lines for the following conic section: $7x^2-6y^2-28x-84y-308=0$

Question 4) Find the value of w:

$$\log_3(x+5) + \log_3(x-2) = \log_3 18$$

$$2^{16y} = x^{10y-12}$$

$$w = xy^x$$

Question 5) Using Cramer's Rule, find $\frac{D_x}{D_y}$ for the following system: $\begin{cases} 2x-4y+3z=3\\ 5x-z+2y=4\\ 4x-3y+2z=5 \end{cases}$

Question 6) Let the equation of the conic section with the center (-7, 2), minor axis of length 6 and parallel to the x-axis, and an eccentricity with

the ratio of one over two be defined as
$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1.$$

Find the product of (h + k)(a + m), where m is the distance between the foci.

4.00 · 线链线 + ^线 (4.55)

Question 7) Let A, B, and C represent three consecutive terms for the expansion of $(2x-y)^{12}$, respectively. B is the middle term of the expansion. Find the sum of the coefficients for these three terms.

Question 8) Let $f(x) = 3x^{15} - 7x^{14} + 6x - 14$.

Find (A+B+C+D) in lowest terms, if:

A = The sum of the real roots of f(x). See a spring of the sum of the real roots of f(x).

B =The sum of all roots of f(x).

C = The product of all of the roots of f(x).

D = The greatest positive real solution of f(x).

Question 9) Simplify the following and express as one fraction with positive exponents where $x, y, \& z \neq 0$.

$$\left(\frac{2x^5y}{3xy^4}\right)^{-4} \left(\frac{4x^{-5}yz^5}{5xy^7z^{-4}}\right)^3 \div \left(\frac{3xyz}{4x^{-5}z^5}\right)^{-3}$$

Question 10) Let
$$f(x) = \frac{(x-4)^2}{16} + \frac{y^2}{9}$$
, $g(x) = \frac{x^2}{4} - \frac{(y+3)^2}{20}$,

f(x) = g(x) = 1. Find (A + B)(C + D), if:

A =The y coordinate of a focus of f(x).

B = The length of the conjugate axis of g(x).

C =The focal length of q(x).

D = The sum of the x coordinates of the endpoints of the minor axis of f(x).

Question 11) Solve for all values for x which make the following inequality true:

$$\frac{4-x}{2+x} > 5x-3$$
. Answer must be given in interval notation (See below).

Ex: If 9 < y < 11, then the answer for y would be (9.11).

Question 12) Let 4x - 3y = 5 be line MAO:

Find A + B + C + D, rounded to the nearest hundredths, if:

A =The slope of MAO.

B = The y-intercept of a line which is parallel to MAO and contains the point (In2, 5).

C =The y-intercept of MAO

D = The y-intercept of a line perpendicular to MAO that contains the point (π, e) .

Question 13) A circle has points (4,3), (6,-5), and (6,3) as points on the circle. The equation of the line tangent to the circle at the point (4,3) can be put in the form of Ax + By = C, where A, B, and C are integers. Find the ratio of C over B.

Question 14) Find the area of a triangle containing these 3 points, (1, 2), (-3, 4), and (6, 8).

Question 15) Find $\frac{AB}{CD}$, if:

A = The largest of the 3 consecutive positive even integers which together have a sum of 6006.

B = The number of digits in the product of $3^{2003} \cdot 4^{2004}$

C= The sum of all of the solutions of:

$$7x^{2004} - 14028x^{2003} - 2003x + 2004 = 0.$$

D= The number of positive integral factors of 120.