Note: For this test $i = \sqrt{-1}$ and NOTA is defined as "None of the Above Answers is Correct".

- 1) A square is inscribed in a unit circle with a radius of one. If another circle is inscribed inside the square, then what is the circumference of the smaller circle?
- A) π
- B) $\frac{1}{\sqrt{2}} \pi$ C) $\pi \sqrt{2}$ D) π^2
- E) NOTA
- 2) A farmer owns a rectangular field that is 4 miles long and 2 miles wide. He wants to build a house within the field that, combined with its yard, will take up an area of 0.5 square miles. How many square miles will be remaining?
- A) 5.5
- B) 6.5
- C) 7.5
- D) 8.5
- E) NOTA

3) Evaluate:

$$i^{45} + i^{35} - \sqrt{-121} + (4+3i)^2 - (2-i)(4+i)$$

- A) 7-4i

- B) 2+17i C) 5+11i D) -2+15i
- E) NOTA

- 4) Evaluate: $\sum_{i=1}^{50} (k^2 + 3)$
- A) 43033
- B) 43063
- C) 43075
- D) 51039
- E) NOTA
- 5) Solve for x in the following equation: $4x^2 + 9 = 0$, where $x \in \Re$.

- A) $\frac{3}{2}$, $-\frac{3}{2}$ B) $\frac{9}{4}$ C) $\frac{3}{2}$, $-\frac{3}{2}$, D) $\frac{\pm 9i}{4}$
- E) NOTA
- 6) If x represents the number of positive integral factors of 2002, then find the largest prime number that is less than x.
- A) 7

- 11 (constant of the C) 13 (constant D) 17 (constant of the C) NOTA

- What is the area of a right triangle that has sides with lengths of (x+4), (x+19), and (x+34)? The first of the state of the s
- A) 1350

- B) 1675 () (C) 5625 () (D) 6275 () (E) NOTA
- 8) What is the remainder when $2005x^5 2004x^2 + 2003x 2002$ is divided by x-3?
- A) -513262
- B) -465172 C) -477190 D) 473186 E) NOTA

District production of the control of the control

- 9) Mary can scrub the entire kitchen floor in two hours. It takes Anne three hours to complete the same job. How long does it take Oscar to scrub the floor if the three of them working together can complete the job in half an hour?

- A) $\frac{1}{2}$ hour B) $\frac{6}{7}$ hour C) 1 hour D) $\frac{5}{2}$ hours E) NOTA
- 10) Find the midpoint of a line segment containing end points of (-4,7)&(-8,-3).
- A)(2,2)
- B) (2,5)
- C) (-6,5) D) (-6,2)
- E) NOTA

- 11) Find the sum, in base 6, of $2003_{Four} + 2004_{Five}$
- A) 1441_{cir}
- B) 4001_{sir} C) 333_{sir}
- D) 225_{six} E) NOTA

12) Solve the system of equations and find (x + y + z):

$$3x + y - z = 12$$

$$4x - y + 2z = 13$$

$$-10x + 4y - 3z = -14$$

- A) 10
- B) 11 C) 14
- D) inconsistent E) NOTA
- 13) For a polynomial equation of the second degree, the sum of the roots is -4, the product of the roots is -0.5, find the sum of the reciprocals of the roots:
- A) -8
- B) -1

- E) NOTA

14\	Tf the sinale	s digit in 2003^{22}	$n^7 = now$, and the	hundreds digit in 198	$0^{725} = then$,
17)	Find: t	hen – now	gri	Note that the contract of the second	1
A)	-7	B) 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D) 9	E) NOTA
15)	interest ra	up invests \$ 365 in the of π %, comput cent, if he inves	ounded quarterly.	ual fund. The fund ho What is Gorrest Fum	p s protii, io
A) NO	\$ 933.27 TA	B) \$ 725.35		D) \$ 227.22	·,:: • • E)
16)	Find the nur	1.4	ntegral factors of	5544.	
A)	÷	B) 24	c) 48	D) 96	E) NOTA
17) A)		ational roots are B) 1	in the equation: x	$\begin{array}{c} 4 - x^3 - 5x^2 + 3x + 6 \\ \text{D) 4} \end{array}$	E) NOTA
18)	Fyaluate:	$\sqrt{6+\sqrt{6+\sqrt{6+.}}}$	=	egistromatics of wa	r etek
	-2.5	B) √6	c) 2.5	$D) \frac{49}{20}$	E) NOTA
		2.5		$\mathbb{R}^{d} = \mathbb{R}^{d} = \mathbb{R}^{d} = \mathbb{R}^{d}$	
19) The discrin	ninant of a quadro	tic function is -35	. The function has bu	t one
	y-interce	pt and its value is	$\log\left(\frac{1}{3}\right)$. What di	rection does this quad	dratic
	function o	open if it must be	one of the following	ng (down, up, right, or	· left)?
A)	down	8) up	C) right	o, d-D) left mig to	E) NOTA
20)) Solve for 2	κ : $\ln(\log_2(\log_3$	$(\log_4 x))) = 0$	ing the state of t	
A)) 0	B) 81	<i>C</i>) 19683	D) 262144	E) NOTA
21	l) Find the d	istance between (3, 1, -8) and (-2, 7	, -3) in space.	
A '	\ <u>[62</u>		c) $\sqrt{114}$	D) $\sqrt{182}$	E) NOTA

22) The area of an ellipse is the same as the area of a square with sides of length 8. If the minor axis is always two-thirds the length of the major axis in the ellipse, then find the focal length of the ellipse. Round the answer to the nearest hundredth. The focal length is the distance between the foci points.

- A) 8.22

- B) 8.23 C) 8.24 D) 8.25

E) NOTA

23) $z \log_x AB^4 - \log_x B^z + 2 = z \log_x A + z \log_z z + 3z \log_x B$. Find the value of z.

- A) $\log_{x} A$
- B) $\log_{\bullet} B$
- C) $4\log_x B$ D) $-2z\log_x B$ E) NOTA

24) Find the sum of all values that make this statement true: |x+5| = |2x-7|.

- B) $\frac{35}{3}$ C) $\frac{38}{3}$ D) 12 E) NOTA

25) The eccentricity of a conic section is $\frac{3}{5}$. The distance between the foci points is 24. Find the length of the minor axis of this conic section.

- A) 32
- B) 40
- D) 48

E) NOTA

26) How many digits are in the product of $(2002)^{2003}(2004)^{2005}$?

- B) 13234 C) 30458
- D) 30471

E) NOTA

27) Which of the following is equivalent to: $\sqrt{27x^3y^2} \sqrt[3]{x^5y^{13}z}$. For x, y, &z > 0.

- A) $x^3y^5 \sqrt[6]{27xv^2z^2}$
- B) $3x^2y^5 \sqrt[6]{27x^2y^2z^2}$ C) $3x^3y^5 \sqrt[6]{27xy^2z^2}$

D) $3x^3v^4 \sqrt[6]{3x^2v^3z^2}$

E) NOTA

28)	The dot product of two vectors is found by multiplying the corresponding values					
	and adding of all the parts as follows: $(a,b,c) \bullet (d,e,f) = ad + be + cf$.					
	If $(y,5,-3) \bullet (4,6,x) = 41$ and $(-5,y,6) \bullet (x,4,2) = 25$, then find					
	the sum of $x + y$.					

A) 0

B) 1

E) NOTA

29) Let A = the highest number of possible positive real roots of f(x) and Let B = the highest number of possible negative real roots of f(x), according to Descartes' Rule of Signs. Find $(A+B)^3$ for the following f(x):

$$f(x) = x^{2005} + 1966x^{2002} - 819x^{2001} - 1122x^{1998} + 1025x^{1991} - 227x^{1980} - 725x^{1966} + 1$$

A) 216

B) 729 C) 1000

D) 1728 E) NOTA

30) Let the discriminant of a quadratic equation equal 16. The quadratic can be put in the form $ax^2 + bx + c = 0$, where a, b, & c are real numbers. Which of the following choices has to be correct?

- A) The quadratic has 2 negative real roots
- B) The quadratic has a positive y intercept
- C) The quadratic opens upward
- D) The quadratic has rational roots

E) NOTA