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National Numeracy Strategy (NNS) guidance appears to characterise mathematical
language as a set of specialist words with unambiguous definitions, yet analysis of the
classroom transcript suggests that at least some mathematical concepts cannot be
captured by such definitions. This paper explores the notion of definition within math-
ematics, considering both school mathematics and the field of academic mathematics
research. Extracts of texts from these domains are analysed using tools drawn from
systemic functional linguistics. The more advanced texts show definitions to be
constructed and used in creative and purposeful ways. This contrasts with the one-
to-one word-concept relationship apparent in the NNS guidance and in a text for
‘Intermediate Level’ secondary students. This finding raises the question of the extent
to which the linguistic models implicit in the texts for less advanced school students
and their teachers allow students to learn more powerful aspects of mathematics.
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Preliminary Thoughts
The book Mathematical Vocabulary (DfES, 2000) represents the current official

discourse of school mathematics in England, embodying the values, world-view
and practices that teachers are expected to adopt in their classrooms. The impor-
tance of language for children’s learning is stated as the most important motiva-
tion for the publication and is presented as a simple and unquestionable fact.
Thus:

mathematical language is crucial to children’s development of thinking. If
children don’t have the vocabulary to talk about division, or perimeters, or
numerical difference, they cannot make progress in understanding these
areas of mathematical knowledge. (DfES, 2000: 1)

However, the only specific aspect of language identified is ‘vocabulary’ – in fact,
mathematical language appears to be identified with its vocabulary. The title of
the book, its format (mainly consisting of lists of words) and the repeated empha-
sis on vocabulary, terminology and words (see introduction1, this volume, Appen-
dix 1) construct an image of mathematical language as a collection of discrete
terms. Although there are suggestions of language activities such as discussing,
hypothesising, reading or writing instructions that hint at the complex functions
of language in mathematics, these are presented only as ‘opportunities to
develop [children’s] mathematical vocabulary’ (p. 3) rather than as development
of a more broadly conceptualised mathematical language.
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In contrast to other kinds of language (described as informal), mathematical
words are described as technical and correct. Teachers are exhorted to ‘explain
their meanings’ and to ‘sort out ambiguities or misconceptions’ (p. 2). The use of
a mathematical dictionary is described as necessary in every classroom to be
used by both children and teacher ‘to look up the meanings of words’ (p. 36). The
relationship between word and meaning is thus constructed as one-to-one and as
expressible in terms of other already known words. The meaning of the mathe-
matical term appears to be identified with its dictionary definition and under-
standing of mathematical concepts is implicitly equated to understanding the
words with which they are expressed.

The mathematical term under consideration in the classroom transcript (intro-
duction, this volume, Appendix 2) is two-dimensional shape. As advised by the
NNS, I turned to a mathematical dictionary (Selkirk, 1990: 170) and found three
definitions for dimension, the one most relevant to this context being:

the number of measures needed to give the place of any point in a given
space, the number of coordinates needed to define a point in it.

It seems unlikely that such a formal definition is accessible to Y5 children or very
useful to their teacher. Moreover, even this definition is not entirely unambigu-
ous, as the nature of the ‘given space’ is left open. For example, the question of
whether a circle is one-dimensional or two-dimensional (see turns 24–34) is not
immediately resolvable.2 This is not a weakness in the definition but a character-
istic of the mathematical concept itself.

Most importantly, I question whether any definition can capture the richness
of the mathematical thinking about dimensions that the children and teacher
were engaged in during the lesson. Rather than producing an unambiguous
meaning for this term, the talk of the children and the teacher constructs a
multi-faceted notion of dimension. This includes:

• the idea of 2D as ‘flat’ and 3D as ‘solid’ (turns 7, 9);
• listing dimensions (breadth, height, etc.) invoking an implicit two-ness or

three-ness (turns 6, 32)
• a notion of 3D involving something extra when compared to 2D (turn 9);
• the idea that ‘thickness’ is characteristic of 3D (turn 41);
• diagrammatic representations of 2D (a square) and 3D (a 2D isometric

drawing of a cube) (turn 9);
• imagining what might be meant by one- and even zero-dimensional objects

(turns 14–19).

All of these aspects of the meanings of two-dimensional and three-dimensional
seemed relevant, valid, and at some points, especially during the discussion of
one- and zero-dimensions, mathematically sophisticated, though often incom-
plete or ambiguous (as in the listing of circumference, diameter and radius in
identifying the dimensionality of a circle at turn 32). Yet at no point during the
lesson did it seem possible or even appropriate to explain or to remove all ambi-
guities from the ways in which the words were being used or to establish a single
‘correct’ way of speaking and thinking about dimensionality.
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An important aspect of the classroom dialogue in the extract is the implicit
nature of the definition. An explicit definition of two-dimensional shape is never
given, instead:

� some properties are named (flatness, width and length) – and properties a
two-dimensional shape should not have (breadth, thickness);

� some examples (square) and non-examples (cube, line) are given;
� contrasts are constructed between two-dimensional shapes and shapes

with other numbers of dimensions (e.g. turns 9, 41).

This perceived tension between the official discourse of the current mathe-
matics curriculum and that of mathematical practice in a primary classroom
prompted me to look more widely at the ways in which word-concept relation-
ships are constructed in different mathematical practices. In what follows, I first
review the role of definitions in mathematics itself, as discussed by mathemati-
cians and mathematics educators. This is followed by an exploratory analysis of a
small number of examples of definitions taken from published mathematics
research papers and from school textbooks. The similarities and differences
between these raise questions about relationships between school mathematics
and the mathematics done by professional mathematicians (in universities and
in industry) and about how the ways in which definitions are presented in school
may affect students’ access to higher mathematics.

The Academic View of Definition in Mathematics
The notion of definition has a privileged place in many mathematical practices,

highlighted by the claim by mathematicians and mathematics educators that
mathematical definitions are different from ‘ordinary’ definitions, as well as by
its frequent association with terms such as unambiguous, minimal or necessary and
sufficient that are highly valued in high status mathematical discourses.

Borasi, a mathematics educator who has undertaken research both at school
level and with university mathematicians, lists the following ‘commonly
accepted requirements for mathematical definitions’:

Precision in terminology. All the terms employed in the definition should
have been previously defined, unless they are one of the few undefined terms
assumed as a starting point in the axiomatic system one is working with.3

Isolation of the concept. All instances of the concept must meet all the
requirements stated in its definition, while a non-instance will not satisfy at
least one of them.

Essentiality. Only terms and properties that are strictly necessary to
distinguish the concept in question from others should be explicitly
mentioned in the definition.

Non-contradiction. All the properties stated in the definition should be
able to coexist.

Non-circularity. The definition should not use the term it is trying to
define. (Borasi, 1992: 17–18)

In commenting on these requirements, she makes use of two criteria for justify-
ing them. A definition of a given mathematical concept should:
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1. Allow us to discriminate between instances and non-instances of the
concept with certainty, consistency, and efficiency (by simply checking
whether a potential candidate satisfies all the properties stated in the defini-
tion);

and should:

2. ‘Capture’ and synthesise the mathematical essence of the concept (all the
properties belonging to the concept should be logically derivable from
those included in its definition).

The requirements listed do not seem peculiar to mathematics (apart perhaps
from the formal acknowledgement of the role of undefined terms), though they
may be applied rather more rigorously than in other domains. Borasi’s criteria,
however, hint at a role for definitions within mathematical practice that goes
beyond both the record of usage of standard dictionaries and the technical
taxonomising of common-sense phenomena identified by Wignell (1998) in the
practices of natural and social sciences. Definitions in mathematics form a basis
for logical derivation not only of those properties already known (perhaps in a
common-sense way) to belong to the concept but also of new properties.

The notion that mathematics may be generated from definitions by logical
deduction is strongly embedded in traditional methods of teaching mathematics
at the university. Often characterised as definition, theorem, proof 4, much exposi-
tion of mathematics to undergraduates has taken the form of the presentation of
logical sequences of deduction from definitions, though this approach to teach-
ing has been widely criticised by mathematics educators and by students them-
selves for its failure to help students to develop the concepts involved or, indeed,
to learn how to derive proofs themselves (see, for example, Anderson et al., 2000;
Burn, 2002). The definition, theorem, proof format is also strongly represented in
published mathematics research reports. As Burn (2002: 30) points out, however,
this may not always represent the way that research mathematicians actually go
about doing mathematics:

The research mathematician may come to his results starting from special
cases, which will appear as corollaries in the final version, from which he
gets his ideas, which is worked with until he has a proof. Then the theorem
is what has been proved. At this point he formulates his definitions so as to
make the theorem and proof as neat as possible.

During the early stages, the concepts the mathematician works with may thus
not be formally defined but more or less intuitive, derived from special cases –
concept images rather than concept definitions, to use Tall and Vinner’s (1981)
distinction.5 The construction of the formal definition and the consequent
creation of a technical term is a deliberate creative act, aiming not simply to
describe or ‘capture’ a pre-existing concept but to shape that concept in a way
that lends itself to particular purposes. Of course, this definition may subse-
quently be used to generate deductive sequences leading to the discovery of
further theorems.

A further characteristic of mathematical definitions is the possibility of multi-
ple ‘equivalent’ definitions. I have used scare quotes for the term equivalent
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because, while two definitions may identify the same object, it is questionable
whether they necessarily correspond to the same concept and they certainly lead
to different forms of mathematical activity. Borasi gives the example of alterna-
tive definitions of a circle: the metric definition (focusing on the idea that all
points on a circle are equidistant from a given centre), generally used at early
stages of school mathematics, and the analytic definition (expressed in the form of
an equation such as (x – a)2 + (x – b)2 = r2), encountered by students at Advanced
level. Either definition can be used to solve a problem such as ‘Find the circle
passing through three given points’ but the choice of definition makes a signifi-
cant difference to the process of solution (Borasi, 1992: 19).

Characteristics of the use of definitions in mathematics thus include:

• There exists a possibility of conflict with intuitive images of the concept
being defined, especially with images formed by generalising from exam-
ples.

• Definitions form a generative basis for logical deduction, not only of known
properties of the concept but of new properties.

• Definitions may be created deliberately in particular forms in order to facil-
itate the construction of theorems and proofs.

• A single object may be defined in several logically but not conceptually
equivalent ways and such alternative definitions facilitate the generation of
different types of theorems, proofs and solution methods.

These characteristics contribute to a relationship between definition and concept
that appears dynamic and open to manipulation and decision making by mathe-
maticians. This contrasts sharply with the static word-concept relationship
constructed by the NNS advice.

Analysis of Definitions in Mathematical Texts
In this section, I shall examine, compare and contrast the roles that defini-

tions play in different mathematical practices applying a critical discourse
analytic approach (Fairclough, 1992) to a small number of written texts. This
analysis allows us to identify epistemological differences between discourses,
variations in the ways in which the activity of the human mathematician is
represented in relation to definitions, and tensions between the various discur-
sive resources that teachers and students may draw on as new mathematical
language is introduced. The texts come from three sources: an article published
in an academic research journal and two school textbooks aimed at slightly
different populations of students. By focusing on written texts, I am looking at
only one aspect of the practices in which the texts arose. I would argue,
however, that because of the high status of written language and the extent of
writing activities in those practices, the analyses will have high relevance.
Research papers are often taken to represent the official discourse of mathemat-
ics because of their important role in regulating the academic mathematics
community, although there is also variation among them (Burton & Morgan,
2000) and of course there are other forms of academic mathematics practice that
involve very different kinds of texts. My intention is to compare and contrast
the place of definitions and the way in which relationships between word, defi-
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nition and concept are constructed in this official discourse of mathematics with
their place in school mathematics practices and to consider the extent to which
the texts that inform school students’ experience of mathematics serve to appren-
tice them to academic mathematics practices.

Rather than examining further texts related to primary mathematics, I have
chosen textbooks designed for students in Key Stage 4 (aged 15–16). These repre-
sent the endpoint of mathematics education for many students and a transition to
more advanced and specialist study for others. They may thus be seen to repre-
sent an eventual target towards which the Year 5 pupils in the classroom tran-
script and other primary pupils whose mathematical experience is shaped by the
NNS are aiming. This provides a basis for considering the ways in which the
approach to mathematical language recommended by the NNS provides an
adequate and meaningful preparation for participation in more advanced math-
ematical practices.

The analysis uses tools drawn from systemic functional grammar (Halliday,
1985) selected to illuminate the ways in which the nature of mathematics and
mathematical activity may be constructed through the texts presented to
students. These are outlined in Table 1, identifying the questions used to interro-
gate a text and the grammatical tools that operationalise the resulting descrip-
tion. The first two questions in the table are related to Halliday’s (1973) ideational
function of language, concerned with the nature of our experience of the world;
the next two to the interpersonal function, concerned with the identities of the
participants and relationships between them; and the final question to the textual
function, concerned with the way the text itself becomes a ‘living message’. The
description thus constructed allows us to address critical questions about how
the text may contribute to possible readers’ positioning in relation to mathemat-
ics and mathematical activity, asking in particular: What is the nature of mathemat-
ics/ mathematical objects/ mathematical activity? (using the first two questions in
Table 1) and Where do power and authority lie? (using the second two questions) as
well as specifically considering the role of definitions in the text and, by exten-
sion, in the practice. In the cases that follow, I do not present full grammatical
descriptions but use the questions and tools outlined in Table 1 to highlight
selected aspects that contribute significantly to addressing these critical ques-
tions and allow us to see most clearly the differences between the various texts. A
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Table 1 Analytic tools

Descriptive questions Grammatical tools
Who or what are the actors and where
does agency lie?

What objects and humans are present?
How are active or passive voice used?

What are the processes? Relational, material, mental/behavioural?
What are the roles of the author and
reader and what is the relationship
between them?

How are personal pronouns used? In
what kinds of processes are author and
reader actors?

Describe the modality Modal verbs, adverbs, adjectives
How is the status of ‘definition’
established textually?

Given/New structures6; how cohesion is
achieved.
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fuller discussion of applications of this approach in mathematics education
research may be found in (Morgan, 1996, 1998).

Definitions in a research paper
In two extracts from the same mathematics research paper7 published in a

standard academic journal, we can see a break from the orthodox expectation of a
one-to-one relationship between concept and definition and the construction of
definition as a (possibly contestable) product of human endeavour. The first
extract comes from the introductory section of the paper.

Extract 1
88

In the first section of the paper we give a somewhat non-standard definition
of the Hecke algebra as a subquotient of the group algebra, which is easily
seen to be equivalent to the usual definitions. This viewpoint makes the
actions of the Hecke algebra on cohomology more or less transparent (see
Lemma 1.1), as well as being adapted for our intended applications (e.g.,
Lemma 5.1).

Extract 2 is taken from a later section of the same paper in which findings and the
reasoning leading to them is presented using the definition, theorem, proof
format discussed above.

Extract 2

We recall the definition of a G-functor (Green [6]). . . .
Definition. A G-functor F = (F, R, I, C) over k consists of a k-module F(H)
corresponding to each subgroup H of G and the following operations: [ . . . ]
Satisfying the following axioms [ . . . ]
Definition. A G-functor is said to be cohomological if it satisfies
(C) I R xH

K
H
K ( ) = [K:H]x whenever H K, x F(K)

An analysis of the two extracts, structured by the questions identified in Table
1 above, is presented in Table 2 and is discussed below.

The claims of the paper depend on the idea, made explicit in Extract 1, that the
same object (the Hecke algebra) can be defined in alternative ways. The modifica-
tion somewhat non-standard implies that definitions are not unique but at the same
time that there exist privileged definitions that are generally acknowledged/
valued by the community. A standard definition is likely to be known (or at least
readily accessible) to the expected reader of this paper. The modality of somewhat
defers apologetically to the community values but this is tempered by the strong
authority claim that the new definition can easily be seen to be equivalent. In this
paragraph, therefore, the author is establishing his identity within the commu-
nity, acknowledging the priority of established knowledge while claiming
novelty, validity and utility for his own work.

The metaphor of alternative definition as a ‘viewpoint’ is consistent with the
discussion of multiple equivalent definitions above. A definition is not identical
with the object but is a way of looking at an independently existing object. The
choice of a particular definition is presented both in relation to general commu-
nity values (transparency) and as a personal or contextual matter, related to ‘our
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Table 2 Analysis of extracts of a mathematics research paper

Extract 1 Extract 2
Actors
and
Agency

we give a . . . definition – human agency is
explicit at first, though the definition then
is easily seen – the passive voice
obscuring agency.

This viewpoint is presented as an actor in
its own right, completing a shift from
active human agency to metaphorical
agency of the definition itself.

Human agency is present in the first
sentence, recalling the definition, but is
obscured by use of the passive voice is
said to be in the second definition.

The citation of the mathematician Green
may be considered to ascribe agency to
him as originator of the definition.

Processes Mental process see would normally
require a sentient agent but here is in the
passive voice.

Material process make transparent is
performed by the abstract viewpoint.

Mental process we recall.

Behavioural process is said, here in the
passive voice.

Relational A G-functor . . . consists of [a
collection of its parts]

Author
and
Reader

The (single) author uses we in a way that
cannot include his reader as it refers to
his act of writing the definition. This is a
widely, though not universally, observed
convention in mathematics research
papers (see Burton & Morgan, 2000).

The statement that the definition is
adapted for our intended applications
establishes the author’s ownership of the
material presented in the paper.

We recall in this case may be read as an
inclusive use of we orienting the reader to
knowledge that is available to them as
members of the academic community.

Modality The suggestion that the definition is easily
seen to be equivalent may serve to assert
authority over the reader. If an individual
reader cannot see, it must arise from their
own inadequacy.

Modifications somewhat non-standard and
more or less, on the other hand, reduce the
strength of the claims in this section.

The modality throughout is absolute. At
this point in the paper, definitions are not
open to question.

Textual
status of
definition

As might be expected in an introductory
paragraph, the thematic structure of the
first sentence orients the reader to the
organisation of the paper. Subsequently,
the viewpoint or definition is itself
positioned thematically.

In the first definition, the word G-functor is
given and the description of its properties
is the new information, providing the
properties that distinguish this concept
from others. In the second, this order is
reversed. A given object is said to be
cohomological – a pre-existing concept is
given a new name, although the order
here is not consistent as the properties that
allow the new name to be used are listed
afterwards.

Bold headings mark definitions as
important. These and the label (C) will be
referred back to in the proofs that follow
later in the paper.
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intended applications’. It is thus possible to make judgements about the value of
definitions based not only on the global, structural criteria identified by Borasi
but also on more local criteria related to the problem currently under consider-
ation, in a way similar to that described by Burn (2002).

In Extract 2, the possibility of alternatives is not considered, though the cita-
tion ascribes ownership of the first definition, suggesting that the definition may
not be commonly known but was an original product of the cited mathematician.
The structure of the definition itself as an absolute statement of the constituent
parts of the G-functor and of its necessary properties gives no hint of its origin.
Did this object pre-exist its definition in some common-sense way or was it
entirely a product of Green’s imagination? Thus it is not clear whether this defini-
tion is an invention or a discovery; it is simply a statement of properties. The
second definition, on the other hand, is presented as a human construction – or at
least a human decision about how to name the kind of object described. What-
ever the origin of the definitions, their structural importance in the mathematical
arguments constructed in the paper is marked by the use of bold headings and
labels.

The presentation of definitions in this research paper thus include features
similar to those identified in the previous section:

• there can be different definitions of the same object;
• choices between definitions may be made on the basis of utility;
• definitions play an important role in the formation of mathematical argu-

ment.
• they are the product of human activity, though it is not always clear

whether this is the construction of new objects or naming of pre-existing
objects;

In addition, it appears that various definitions of the same object have different
standings within the mathematical community and may need more or less justi-
fication by an author.

Definitions in school mathematics texts
The ways in which definitions appear in school mathematics texts vary signifi-

cantly with the type of mathematics involved and with the age of the intended
student-readers. At lower levels, in spite of the NNS advice, most new terms
seem to be introduced by naming and by exemplification rather than by explana-
tion or definition. Given the limited space available in this paper, it is not possible
to review the different approaches in detail, so I have chosen to focus on two
examples from Key Stage 4 (Years 10 and 11), the stage at which students are
expected increasingly to engage in formal mathematical reasoning, including the
use of definitions (DfEE, 1999). The two examples chosen as a starting point are
taken from textbooks in the same series, written by the same authors, intended
for students in Key Stage 4 preparing for GCSE examinations at Intermediate and
at Higher level (public examinations taken at age 16+ at the end of compulsory
education, set at different levels for students with different expected levels of
attainment). Both examples present definitions of trigonometric concepts,
though at different levels.9
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GCSE Intermediate Textbook

In Investigation 15:1, you found that the ratio
shortest side
longest side

i.e.
opposite

hypotenuse
is the same for each of these triangles.
This ratio is given a special name. It is called the sine of 40° or sine 40°.

The ratio
adjacent

hypotenuse
is called cosine 40°. The ratio

opposite

adjacent
is called

tangent 40°.

The abbreviations sin, cos, tan are used for sine, cosine, tangent.
The ratios sin A, cos A, tan A are called trigonometrical ratios, or trig. ratios.

GCSE Higher Textbook

The ratios sin θ and cos θ may be defined in relation to the lengths of the
sides of a right-angled triangle.

sinθ is defined as
length of opposite side

length of hypotenuse
.

cosθ is defined as
length of adjacent side

length of hypotenuse
.

Since θ < 90, sin θ and cos θ defined in this way only have meaning for
angles less than 90°.
We will now look at an alternative definition for sin θ and cos θ which has
meaning for angles of any size. ( . . . ) This gives the following alternative
definition for the ratios cos θ and sin θ.
The ratios cos θ and sin θ may be defined as the coordinates of a point P
where OP makes an angle of θ with the positive x-axis and is of length 1.
Defined in this way, the ratios cosθ and sinθ have meaning for angles of any
size.

An analysis is given in Table 3, laid out to facilitate comparison of the two
texts.

Some significant differences between the two texts are apparent from this
analysis. Considering the nature of mathematics and mathematical activity in
the context of definition, in both texts agency in the act of naming or defining is
obscured by use of the passive voice but the types of activity in which human
actors are agents are different. In the Intermediate text, the student herself is
presented as having been involved in an earlier practical activity. In the Higher
text, there is no practical activity but we are engaged in the intellectual activity of
looking at an alternative definition. The forms of the two texts themselves also
contribute to differences in the type of activity that is constructed as mathemati-
cal. The Intermediate text is essentially descriptive, starting with what is known
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about a specific concrete example and extending the description to naming a
more general set of similar objects. The object/concept of the ratio between two
sides of a triangle is established as the outcome of practical activity before it is
named. This order is reversed in the Higher text: the choice of an alternative defi-
nition changes the nature of the object being defined. This text also uses struc-
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Table 3 Analysis of GCSE texts

GCSE Intermediate GCSE Higher
Actors
and
Agency

The ratio is given a special name, is
called and the abbreviations . . . are
used – passive voice obscures
agency.

The ratios . . . may be defined – passive
voice.

Sin and cos have meaning.
Processes Material process found by student.

Behavioural processes call, use which
would normally require a sentient
agent but here are in the passive
voice.

Behavioural processes define and look

Relational (intensive) have
[meaning].

Author
and
Reader

You found . . . – student agent in
practical activity.

We will look – is this the authors or is
it an inclusive we? In either case,
there is some human agency here
and it is possible to read this as an
expression of solidarity.

Modality Generally neutral, i.e. absolute
modality (these are given facts – no
questions asked).

The ratio is given a special name –
stressing the importance of the new
vocabulary.

Modification of verbs to reduce level
of certainty – may be defined. This
opens up the possibility of
alternative ways of doing things –
and the possibility that the student
might be able to make choices.

Similar adverbial and adjectival
modifications: defined in this way, an
alternative definition.

Textual
status of
definition

All sentences except the first have
unmarked word order: the ratio
(found by the student) is the given
knowledge; the mathematical
terminology is the new.

Move from a specific example of a
concrete object (the ratio of opposite
to hypotenuse in a 40° triangle) to
giving a name to this object and to
extending this naming to general
similar objects – thus the object/
concept pre-exists the naming of it.

Cohesion achieved by repetition of
the ratio and its cognates in the
thematic position, presenting the
text as a collection of facts about the
ratio – description.

In the final sentence, word order is
marked by positioning the adverbial
phrase defined in this way in the
‘given knowledge’ position. The
form of the definition is presented as
changing the meaning of the object –
thus definition precedes object/
concept.

Since θ < 90 in a thematic position
presents the text as a process of
logical argument.
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tures that highlight the formation of a logical argument – an aspect of
mathematical activity absent from the Intermediate extract.

The second major difference arises from the modality of the two texts. While
the Intermediate text lays down a set of absolute and unquestionable facts to be
accepted by the student-reader, the Higher text allows uncertainty and alterna-
tives, opening up the possibility that the student-reader herself might choose
between the two definitions. The student entered for the Higher level examina-
tion is thus constructed as a potential initiate into the practices of creative and
purposeful definition that academic mathematicians engage in.

Discussion
The examples analysed here were not selected in a systematic way so it would

be inappropriate to draw firm conclusions about differences between various
types of texts. The analysis does, however, raise some questions and hypotheses
about the ways that definitions are presented at different levels and the roles that
they play in different mathematical practices. The extracts from the research
paper confirm the characteristics of mathematical definition identified in the
literature on advanced mathematical thinking, in particular their role in argu-
ment and the possibility of purposeful choice between alternative definitions of
the same object. These characteristics may also be seen in the extract from the
textbook for Higher level students. The definitions encountered by the Interme-
diate level students involve naming and formalising a pre-existing concept,
playing a role much closer to that characteristic of definitions in natural and
social sciences (Wignell, 1998). Similar differential access to mathematical prac-
tices is identified by Dowling (1998) in his analysis of a differentiated textbook
scheme. In that case, the ‘lower’ students were constructed as engaged in ‘every-
day’ practices and were denied access to esoteric mathematical practices.

The NNS characterisation of the relationship between mathematical vocabu-
lary, meaning and understanding contains no hint of the logical, generative or
creative aspects of mathematical definition. Of course, it is necessary to consider
whether this reflects essential differences between different types of mathemati-
cal concept met at different stages of learning mathematics. Perhaps only the
concepts encountered at more advanced levels lend themselves to these forms of
mathematical activity? A counter-example to this suggestion, familiar to many
teachers of mathematics at both primary and secondary levels, is the concept of
rectangle and the debate that arises in classrooms about whether a square is a rect-
angle (resulting, perhaps, from trying to find the rectangle with the largest area
for a given perimeter). Resolving this debate involves making a choice about the
precise definition of rectangle to be used and then engaging in logical argument
based on the chosen definition. It also seems to involve the sort of conflict
between concept image and concept definition identified by researchers in
advanced mathematical thinking (e.g. Tall & Vinner, 1981).

Returning to the primary classroom transcript, here too we can see younger
students involved in forms of mathematical practice that go beyond those
suggested by the NNS booklet. While no formal definition of dimension is given
in the lesson, the discussion towards the end of the transcript shows participants
using their implicit definitions to form arguments about whether particular
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shapes (and even whole classes of potentially constructible shapes) fulfil the
necessary conditions to be classified as two-dimensional (turns 41–56). As we
have seen, this form of reasoning is one of the important ways in which defini-
tions are used in mathematics and plays a significant role in mathematical
reasoning and proof. If formalised, it could match the conventional order of
presentation of definition, theorem, proof found in academic papers. At the same
time, the ambiguity and multiplicity of meanings at play in this classroom
provide a setting for argumentation that seems likely to contribute more to the
children’s developing understanding of the concepts involved – and of mathe-
matical activity itself – than any ‘clear explanation’ could.

Another interesting – and mathematical – aspect of the transcript is the gener-
ative activity. Starting from the children’s conceptions of two and three dimen-
sions, derived at least in part from experience with concrete objects, new,
increasingly abstract, objects are conceived with one dimension and no dimen-
sions. Again, the adaptation and extension of definitions into new domains is an
important way in which new mathematics is created. These children, like those
using the Higher level GCSE text, are being inducted into creative mathematical
practices. The one-to-one word-to-meaning relationship apparent in the NNS
official discourse thus seems neither to reflect the way in which mathematical
words and meanings are related in practice nor to provide any inkling of the
powerful and productive role that definitions can play in mathematics.

The image of vocabulary and concept development presented by the NNS is
thus both restrictive in the model it presents of language use and inadequate to
describe what actually happens in classrooms. The differences identified
between the treatment of definition of trigonometric ratios in Higher and Inter-
mediate textbooks also suggest that opportunities to experience some character-
istically mathematical aspects of the use of definitions may be being restricted for
many students. There is a need to look more thoroughly and critically at the ways
in which concepts and vocabulary are introduced to younger and less advanced
students in classroom practice and in texts and curriculum guidance and to
consider alternatives that may serve to introduce them to powerful forms of
mathematical thinking.

Equally the emphasis put on vocabulary by the NNS presents a restricted
image of the nature of mathematical language itself. The analysis of mathemati-
cal texts that I have offered in this paper, by considering the grammatical
construction of mathematical meanings and of relationships between the
authors and readers of mathematical texts, also demonstrates some of the ways
in which mathematical language consists of more than just specialist vocabulary.
Learning to engage in mathematical discourse thus involves learning more than
definitions of mathematical words. Taking definitions as just one example of a
type of mathematical text, their formation and their incorporation into mathe-
matical arguments are fundamental mathematical activities that take place in
language. Induction into mathematical practices must involve students in devel-
oping ways of speaking and writing that enable them to engage in these activi-
ties. The importance of mathematical language has been recognised by the NNS
and current teaching practice at both primary and secondary levels in English
schools now involves considerable effort to incorporate ‘key words’ into lesson
plans and into the classroom environment. While I am not convinced that official
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endorsement is enough to change classroom practice for the better, recognition
of the broader nature of mathematical language and what may be done with it
might create opportunities for teachers and students to develop greater aware-
ness of the ways in which they can use language to do mathematics.

Correspondence
Any correspondence should be directed to Dr Candia Morgan, Institute of

Education, University of London, 20 Bedford Way, London WC1H 0AL, UK
(c.morgan@ioe.ac.uk).

Notes
1. For details of the texts referred to in this paper, which is one of a set, see the introduc-

tory paper, this volume, pp. 97–102 ‘Language in the mathematics classroom’.
2. If the circle is seen as a part of a more substantial space such as a plane then two

measures will be needed to define a point on it. However, if the circle itself constitutes
the entire space, only one measure is needed, i.e. the distance from a fixed point on the
circle in a positive direction around the circumference.

3. In this context, undefined term does not mean a non-scientific or ‘everyday’ term. It
refers to the basic objects of an abstract mathematical system.

4. In this form of presentation, one or more definitions are given, the theorem to be
proved is stated, then an argument is made showing how the definitions (together
with other theorems that have already been established in this way) logically imply
the theorem.

5. A concept image is a more or less intuitive concept, generally derived from experience
of a number of examples and from analogies with informal or everyday concepts,
visual images and language. The corresponding concept definition does not simply
describe a concept image but may even conflict with it. A typical example of such
conflict arises with the concept of the limit of a sequence. For many students, their
concept image includes the notion that a limit is never reached and that subsequent
terms of a given sequence will get closer and closer to its limit. The concept definition,
however, is formulated to include constant sequences, all of whose terms are equal to
the limit of the sequence.

6. Halliday notes that, grammatically, definitions may be set up ‘facing both ways’,
using constructions: ‘a is defined as x’ or ‘x is called a’ (Halliday, 1993: 73). In the first of
these constructions, the word itself is ‘given’ while the description of the concept is
presented as ‘new’; this order is consistent with a creative function of definition. The
act of defining brings the mathematical concept into being and provides it formally
with the properties that distinguish it from other concepts. The second construction,
by contrast, suggests that the concept pre-exists its definition; by being given a techni-
cal name, a ‘common sense’ or more intuitive technical concept is ‘translated’ into
specialised knowledge (Martin, 1993: 209).

7. The details of the sample of mathematics research papers from which this paper is
taken are given in Burton and Morgan, 2000.

8. I will not attempt to clarify the meaning of this passage for the non-mathematician
reader. It may be helpful, however, to recognise that the term algebra as used here does
not refer to the kind of manipulation of letters experienced within school mathemat-
ics. It refers to an abstract structure consisting of elements that may be combined in
specified ways. An algebra is thus an object rather than a field of activity.

9. The textbook, of course, is not the only source of definition for students. In most class-
rooms, the text is likely to be mediated by the teacher and this will affect the ways in
which students interact with the text themselves. As students construct their under-
standings of the nature of mathematics and mathematical activity and of their own
identities in relation to mathematics they will draw to different extents on the text-
book, the teacher’s speech and actions and on their previous experiences. However,
where teachers are insecure in their own subject knowledge they are likely to rely
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heavily on the forms of definition and argumentation that are provided for them in
published resources. Haggarty and Pepin (2002) note that in England, while students
themselves make relatively little use of textbooks, their teachers use them extensively
in planning lessons. Textbooks thus have a strong influence, whether direct or indi-
rect, on students’ experience of mathematics.
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