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Problem Solving Strategy Essay # 10: 

Go to Extremes 
James Tanton, PhD, Mathematics, Princeton 1994; MAA Mathematician in Residence 

*** 
Teachers and schools can benefit from the chance to challenge students with interesting 

mathematical questions that are aligned with curriculum standards at all levels of difficulty. 
 
This is the tenth and final broad essay in the MAA AMC Curriculum Inspirations series. (Next comes a whole slew of short 
pieces and examples, all pulled from the extensive MAA AMC archives, all offering moments of curriculum spark and delight for 
the classroom. The fun is without end!) 
 
And our tenth featured problem-solving strategy is: 
 

Go to Extremes 
Ask something absurd! 

 
It is fun to be quirky and to entertain ideas that have been 
pushed to the edge or to an extreme. It helps one develop 
an intuitive feel for the problem or concept at hand, to 
understand its limitations and restraints, and to identify 
the issues that seem to be at play.  
 
Before exploring an MAA AMC query, let’s illustrate this 
technique by seeing how four extreme questions can 
illuminate subtle features of the concept of an average.  
 

1. Can everyone have an above-average IQ? 
(This brings home the idea that an average cannot be 
outside the range of the set!) 
 

2. What is the average color of a square on a 
checkerboard? Gray?  

(This shows that an average need not actually be in the 
set!)  
 

3. There are nearly 7 billion people on Earth. There 
are eight planets in the solar system. So, on 
average, each planet of the solar system has 875 
million humans living on it! 

 
(True. But this shows that an average need not be 
meaningful notion in all contexts!)  
 

4. I read somewhere that mathematicians have 
proved that, on average, a number has 

2 / 6 1.645π ≈ square number factors. What can 
that possibly mean? 

 
The number 1 has one square number factor: namely, 1.  
The number 18, for example, has two square number 
factors: 1 and 9.  The number 1800 has eight square 
number factors: 1, 4, 9, 25, 36, 100, 225, and 900.   
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Every number has at least one square number factor 
(namely 1), but can have more. And the count varies from 
number to number.  
 
But there are infinitely many numbers. So what can it mean 
to compute the “average” of an infinite list of answers? 
 
COOL COMPUTER PROJECT: Write a program that counts 
the number of square factors each of the numbers from 1 
to 100 possesses, and then computes the average of those 
100 counts. 

Extend your program to count the number of square 
factors for each of the numbers from 1 to 1,000. What is 
the average answer? 
 
Then from 1 to 10,000. Then 1 to 100,000. 
 
What do you think mathematicians mean by the “average” 
of an infinite list of answers? 

 
OUR CHALLENGE TODAY 
 
Let’s now move on to our featured problem for today. Our query is question 11 from the 2011 MAA AMC 10b exam, the tenth-
grade exam: 
 
There are 52 people in a room. What is the largest 
value of n such that the statement “At least n  people 
in this room have birthdays falling in the same month” 
is always true? 
 
The first and a key step in the problem-solving process is: 
 
STEP 1: Read the question, have an 
emotional reaction to it, take a deep 
breath, and then reread the question. 
 
This particular query induces, for me, a feeling of panic: the 
wording of the second sentence seems contorted and hard 
to unravel. It feels scary. 
 
So … I am taking my deep breath. And I am reading through 
the question a second (and a third) time. 
 
STEP 2: Understand the question. 
Understand the different components of 
the question. 
 
I actually don’t feel like I understand this question! That 
second sentence is just plain contorted, and telling me to 
“understand the question” is not helpful. 
 
Let me calm down a bit. I can at least say something tiny 
about the contorted sentence: It is about people having 
birthdays in the same month of the year.  (There, a 
miniscule step towards “understanding the question.”) 
 
 
 

STEP 2 CONTINUED: To understand the 
question, try pushing it to an extreme. 
Try an absurd answer and see what that 
tells you. 
 
This is the featured strategy of the essay and it can help us 
with this second step of problem-solving.  
 
All I “understand” right now is that the question is about 
people having birthdays falling in the same month of the 
year. 
 
Okay … Here is something absurd:  
 
Can a million people in this question have a birthday in the 
same one month? 
 
Well, obviously not. There are only 52 people in the room! 
 
Alright, what is a more appropriate extreme idea for this 
problem? 
 
Can a 52 people in this question have a birthday in the 
same one month? 
 
Yes! It is possible that everyone could have a birthday in 
August, for example.  
 
So is that it? Is that the answer to the problem? 
 
Reread the question. 
 
In doing so the final words “always true” leap out at me. Is 
it always true that 52 people in a room have a birthday in 
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the same month? Clearly not!  This question wants 
something that is absolutely guaranteed. 
 
Can we keep coming down in the extreme numbers we 
play with? 
 
Can a 30 people in this question have a birthday in the 
same one month? 
 
Ooh! This is the wrong question. It is true that 30 people 
could have the same birthday month. But we want 
something that is always true! 
 
Must there always be 30 people in the room with a birthday 
in the same month? 
 
No! We could have 20 people born in January, 20 born in 
February and 12 people born in March, for instance. 
 
Let’s keep coming down: 
 
Must there always be 10 people in the room with a birthday 
in the same month? 
 
No! We could have 9 people born in each of the first five 
months of the year, January through May (that’s 45 people 
in all), and 7 people born in June. 
 
How low should we go? 
 
This is starting to feel tedious!  
 
Avoid tedious work if you can. 
 
Okay. So what is another extreme we could look at? 
 
We started with the extreme of “clumping people 
together” all in one month. This suggests another extreme:  
 

“Spread people out” over all the months.  
 
How spread out can they be? 
 
Well there are 12 months, and we can “put” one person in 
each month, and that accounts for 12 people. Next we can 
put a second person in each month (we have now 
accounted for 24 people). A third person in each month (36 
people). A fourth (48 people), leaving 4 people to spread 
out over four months. 
 
The most “spread out” extreme is to have 5 people with 
birthdays in each of four months, January to April say, and 

4 people with birthdays in each of the remaining eight 
months. (And that is indeed 4 5 8 4 52× + × =  people.) 
 
What does this extreme tell us? 
 
Well … that the numbers 4 and 5 seem significant. 
 
Must there always be 4 people in the room with a birthday 
in the same month? 
 
Well we can’t have 3 people or less with the same birthday 
in each month (that accounts for only 12 3 36× = people 
at most), so there must be at least one month with 4 
people “in” it! 
 
Must there always be 5 people in the room with a birthday 
in the same month? 
 
Well, we can’t have 4 people or less with the same birthday 
in each month, as that will account for only 12 4 48× =  
people at most. So yes, there must be a month with at 
least 5 people “in” it. 
 
Must there always be 6 people in the room with a birthday 
in the same month? 
 
No! We already have an example to show this need not be 
the case:  5 people with birthdays in each of four months 
January to April, and 4 people with birthdays in each of the 
remaining eight months. 
 
So “5” seems to be a key number. We can guarantee that, 
no matter how people’s birthdays fall, there are at least 
are five people with a common birthday month.  We 
cannot guarantee that there are 6 people with a common 
birthday month. (It can happen. It is just not guaranteed.) 
 
What was the question? Reread the 
question. 
 
I feel like that second sentence is now making sense!  
 
What is the largest value of n such that the statement “At 
least n  people in this room have birthdays falling in the 
same month” is always true? 
 
The answer is 5n = ! 
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DECONSTRUCTING THE 
PROBLEM 

Even though we have the answer, I don’t yet feel we’ve 
gotten to the heart of what is going on.  
 
To this end … Have you noticed something curious about 
our language? We talked about people being “put in” a 
month, as though we were putting people in containers 
labeled January, February, and so on. This invokes a visual.  
 
And true to ESSAY 4, drawing a picture could very well help 
us understand our problem.  
 
Here is a picture of our most “spread out” distribution of 
birthdays. In this picture, people are balls placed into 
containers labeled by the months. 
 

 
 
It is now easy to see that we cannot have four or less balls 
(people) in each bin (month), as that would account for 
only 48 people and we have 52. Whatever we do at least 
one bin must have five or more balls in it. 
 
Let’s try changing the numbers to see if we can generalize 
matters: 
 
13 balls and 12 bins: No matter how we distribute the balls 
at least one bin will have two or more balls in it. (Draw a 
picture!) 
 
29 balls and 12 bins: At least one bin will have three or 
more balls in it. (Draw a picture – at least in your mind. Can 
each bin have less than three balls in it?) 

 
100 balls and 12 bins: At least one bin will have 9 or more 
balls in it. (Can they each have 8 or less?)   

Let’s be extreme! 360,001 balls and 12 bins: At least one 
bin will have 30,001 balls in it. (Can they each have 30,000 
or less balls?)  
 
     If N balls are distributed among k bins,   

     then at least one bin has 
N
k

 or more  

     balls in it. 
 
Reason:  What is mathematically wrong if this is not true? If 

each of the k bins has less than 
N
k

balls in it, then there 

are less than 
Nk N
k

× =  balls in all. Ooops! So to have N  

balls in all, there must be at least one bin with at least 
N
k

balls in it.  □ 
 
 
With 52 balls for 12 bins, there must be at least one bin 

with 
52 14
12 3

=  or more balls in it. Since we are not 

considering fractional balls, there must be a bin with at 
least 5 or more balls in it.  
 
Students are now well poised to invent their own clever 
variations of this problem. 
 
There are 820 students at our school. True or False: There 
are at least three students with the same birthday day? 
 
There are 32 students in our class. True or False: There 
must be at least two students with the same third-to-last 
letter of their last names?  (Test it out!)  
 
20 students each rolled a die. True or False: At least four 
students, for sure, rolled the same number? 
 
We can even be wonderfully quirky! 
 
There are two non-bald men in New York city with exactly 
the same number of hairs on their heads! 
 
Reason: There are about 120,000 hairs on a full head of 
hair. There are certainly well over a million non-bald men 
in New York. They can’t all have different counts of hairs! 
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SAYING IT ANOTHER WAY:  
BACK TO AVERAGES 

 
Suppose 52 balls are distributed amongst 12 bins. If we add 
up the count of balls in each bin we must get … 52 balls. As 
there are 12 bins, the average number of balls per bin is 

sure to be 
52 14
12 3

= . (This is true no matter how the balls 

happen to be distributed! Wow!)  
 
More generally, if N  balls are distributed among k  bins, 
the average number of balls per bin is /N k .  
 
Like human IQ, not all the bins can have an above average 
count.   In the same way, not all the bins can have a below 
average count.  
 
This leads to a rephrasing of our result: 
 
Suppose N  balls are distributed among k  bins and not all 
the bins have an average count of balls. 
 
Then there is sure to be at least one bin with an above 
average count of balls, and at least one bin with a below 
average count of balls. 
 
With 52 balls and 12 bins, no bin can have the average 

count of balls (
14
3

). So, no matter how the balls are 

distributed, at least one bin must have an above average 
count of balls ( 5 or more) and at least one a below average 
count ( 4 or less).  
 

HISTORICAL COMMENT: 
 
German mathematician Peter Gustav Lejeune Dirichlet 
(1805-1859) was the first to give this mathematical 
principle a name. He called it the Schubfachprinzip (drawer 
principle). Today it is known either as the pigeonhole 
principle, as Dirichlet’s principle, or as the cubby-hole 
principle. He realized it can lead to powerful, if not 
profound, results. (Think non-bald men in New York!) 

The simplest version of the principle reads:  
 
The Pigeonhole Principle: If more than k  objects are to go 
into k  bins, then at least one bin must contain more than 
one object. 
 
For example, if 13 pigeons are to lodge into 12 cubbies, 
then at least one cubby must contain two or more pigeons.  
Note: This does not mean that exactly one cubby will be 
sure to contain exactly two pigeons! The principle says 
instead, that for each and every possible distribution of 
pigeons, there is always sure to be at least one cubby with 
two or more pigeons in it. 
 
The version of the principle we’ve developed is called the …  
 
Generalized Pigeonhole Principle: If N  objects are to go 
into k  bins, then at least one bin must contain /N k or 
more objects. 
 
Question: In a state lottery one is required to submit a 
four-digit number composed of non-zero digits. (For 
example, 7823 and 8828 are valid entries, but 8906 is not.) 
If 10,000 people enter the lottery, how many people, for 
certain, submitted the same number? 
 
To explore the pigeon-hole principle and its curious 
applications further, see www.jamestanton.com/?p=1315 . 
 

CURRICULUM CONNECTIONS: 
 
The pigeon-hole principle does not, in and of itself, make 
an appearance in the standard curriculum. But I would 
argue that our MAA AMC exploration has accomplished 
two feats:  
 

1. We have deepened our understanding of 
“average” or mean as a descriptive measure of 
central tendency. (A passive use of “mean.”) 

and  
2. We have shown how the mean can be used in 

modeling real-world phenomena. (A surprising 
active use of “mean.”) 

 
 
 
 
 
 
 
 
 
 
 

http://www.jamestanton.com/?p=1315
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COMMON CORE STATE 
STANDARDS and PRACTICES: 

From the high-school curriculum we have touched on part 
of the Common Core State Standard from the statistics 
strand: 
 
 S-ID: 2 Use statistics appropriate to the shape of the data 
distribution to compare center (median, mean) and spread 
(interquartile range, standard deviation) of two or more 
different data sets. 
 
We have also linked with the grades 6-8 statistics strands 
with each mention of “mean.” 
 
In looking at non-bald men in New York City we have 
demonstrated an, admittedly short but superbly elegant, 
application of Mathematical Practices standard: 
 
 MP4:  Model with mathematics 
 
(What other biological or sociological facts about the real 
world can you deduce from the pigeon-hole principle?)  
 
Also, through problem solving, and possibly conducting this 
essay as a class discussion/activity,  we have modeled the 
practice standards: 
 
MP1: Make sense of problems and persevere in solving 
them. 
MP2: Reason abstractly and quantitatively. 
MP3: Construct viable arguments and critique the 
reasoning of others. 
MP7: Look for and make use of structure. 
 

SOME FINAL EXAMPLES: 
 
A “passive use” question of mean: 

a) Give an example of five data values that have 
mean 10 and median 1000. 

b) Give an example of five data values that have 
median 10 and mean 1000. 

Repeat for six data values. 
 
(If your curriculum discusses “mode” try finding six data 
values with mean 10, mode 10 and median 1000.)  
 
Some “active use” questions of mean: 

1. How many people need to be in a room to ensure 
that at least two people have the same pair of 
initials? (For example, my name is “James Tanton” 
and so my initials are “JT.”) At least seven people 
with the same pair of initials? 

 

2. Give an interesting value for N  for which you can 
be sure the statement “There are at least N
Americans with the same number of hairs on their 
heads” is true.  
 

3. Are there two novels with exactly the same 
number of words in them? 

 
  
 
 
 
 
 
 
 
 
 
 
 
Curriculum Inspirations is brought to you by the Mathematical Association of America and the MAA American Mathematics 
Competitions. 
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