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Delvingdeeper

Al Cuoco recently invited Paul Goldenberg 
to talk to an ongoing study group for high 
school teachers at Lawrence (Massachu-

setts) High School, of which I was a member.
Our study group had spent most of fall 2004 

looking at patterns in the repeating decimal repre-
sentations of rational numbers. Our topic on that 
day was divisibility tests, which we had found 
useful in determining the repeat length of these 
representations. Goldenberg and I gave presenta-
tions and compared notes about two different but 
complementary ways of looking at divisibility tests. 
He recently wrote an article for this department 
(“How Does One Know If a Number Is Divisible by 
17?” Mathematics Teacher 99 [April 2006]: 502–5) 
about this encounter, describing a set of divisibility 
tests he had developed at an early age. This article 
is a companion to Goldenberg’s.

I first started thinking about divisibility tests in 
late 1986 in a completely unrelated context. I was, 
of course, aware from childhood of the standard 
divisibility tests (e.g., if the sum of the digits of a 
number is divisible by 3, then so is the number; if a 
number ends in 5 or 0, then it is divisible by 5). But 
these rules had an ad hoc quality to them—there 
was this rule for 3, a different one for 5, and a 
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different one for 11. On this particular day, in a 
sudden flash of insight, I realized that there was 
a general algorithm (or “meta-method”) for con-
structing divisibility tests for nearly all integers. Not 
only that, but as I looked further into the algorithm 
I found out that these divisibility tests were not 
unique. In other words, for each integer, the num-
ber of such tests was potentially unlimited.

For years that is where my insight stood. I used 
these tests for speeding up calculations or as parlor 
tricks, but for a long time they eluded application. 
Then, when I returned to teaching mathematics, I 
found myself dusting off these tests and using them 
in applications like factoring and prime number 
searches. It was thus natural that they should come 
up in our study group discussion of the repeat lengths 
of the decimal representations of rational numbers.

An example of the kinds of repeating decimal 
representations we had been looking at is 1/41, 
which has a decimal equivalent of 0 02439
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 In this 
case the “repeat length” of the decimal representa-
tion is 5. To see how this is related to the divisibil-
ity properties of 41, write

0 02439
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The fact that the five-digit number 11111 is divis-
ible by 41 is thus intimately related to fact that its 
decimal representation has a repeat length of 5. 
Our study group was therefore led to ask whether 
we could determine the divisibility of 11111 by 41 
without actually doing the division.
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The answer is yes, as Goldenberg showed in his 
article. Divisibility tests can be applied recursively. 
You start with 11111. Each step generates a new 
test number. The new test number is smaller than 
the previous one. Eventually, the test number will 
fall within the range of the memorized multiplica-
tion tables. When divisibility of the result is de-
termined, then so is the divisibility of the original 
number.

One test for divisibility by 41 involves taking the 
units digit, multiplying it by 4, and subtracting it 
from the rest of the number. This is shown below.

	   1111|1	 Multiply the units digit (1) by 4 and
	      – 4	 subtract from 1111			 
	   110|7 	� Multiply the units digit (7) by 4 and 

subtract from 110
  – 28
     8|2	� Multiply the units digit (2) by 4 and 

subtract from 8
  – 8
     0

Since the result, 0, is divisible by 41, so is each 
number going up the chain; that is, 82, 1107, and 
11111 are all divisible by 41.

Our study group discussed a whole series of 
divisibility tests, some of which are summarized 
below. The rest of this article discusses how to gen-
erate divisibility tests for many integers. Let’s start 
with tests for divisibility by primes.

Table 1 lists all the odd primes p (except 5) less 
than 100. To test a number n for divisibility by a 
prime p, multiply the units digit of n by any of the 
factors k and add (+) that result to or subtract (–) it 
from the rest of the number, the part of n that re-
mains after the units digit is removed.

“TWO OUT OF THREE” THEOREM
Suppose now that m is any integer, not necessarily 
prime. The proofs of divisibility tests we consider 
below all depend on a result that our study group 
called the “Two out of Three” theorem.

Two out of Three Theorem. Let three integers A, 
B, and C obey the equation A = B + C and let the 
integer m divide any two of {A, B, C}. Then the 
integer m will divide the third as well.

Proof. Without affecting the proof’s generality 
we can take B and C as the two integers divisible 
by m, since we can always move the two integers 
that are divisible by m to the right side of the 
above equation and the remaining integer to the 
left side. Then there are some integers b and c 
such that B = mb and C = mc.

Then A = B + C = mb + mc = m(b + c) for 

some integers b and c. Thus A is divisible by m, 
too.

GENERATING DIVISIBILITY TESTS
We can use the Two out of Three theorem to gener-
ate formulas for divisibility tests.

The first set of divisibility tests we wish to con-
sider is for numbers greater than 2 having a multiple 
that ends in 1 or 9. This is true of any number end-
ing in 1 or 9, of course, but a little thought shows 
that it must also be true for numbers ending in 3 or 7 
as well, because we can multiply these numbers by 3 
or 7 and produce a multiple that ends in 1 or 9.

Let m be the putative factor of a given number. 
Then the assumption above, that m divides a num-
ber ending in 1 or 9, can be written algebraically:

(1)	 m|(10n ± 1),   where “|” means “divides.”

We want to devise a rule that tells us how to 
develop a divisibility test to ascertain whether a 

Table 1

Primes Less than 100 and Factors Needed 
for Divisibility Tests

p k

3 + 1, + 4, + 7, – 2, – 5, – 8

7 – 2, + 5

11 – 1, + 10

13 – 9, + 4

17 – 5, + 12

19 + 2, – 17

23 + 7, – 16

29 + 3, – 26

31 – 3, + 28

37 – 11, + 26

41 – 4, + 37

43 + 13, – 30

47 – 14

53 + 16

59 + 6

61 – 6

67 – 20

71 – 7

73 + 22

79 + 8

83 + 25

89 + 9

97 – 29
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general number (10a + b) is divisible by m.
Assume this is the case, i.e., that m|(10a + b). Re-

call that we are in the case where m has a multiple 
ending in 1 or 9, that is, m|(10n ± 1). If we now let

		  B = 10a + b
		  C = (10n ± 1)b

in the Two out of Three theorem, then m|B and 
m|C. Then by the theorem, m must also divide

(2)	 A = B m C = (10a + b) m (10n ± 1)b
	 A = 10a + b m 10nb – b = 10(a m nb)

So we have assumed that m divides a number 
10n + 1 or 10n – 1 ending in 1 or 9 and that m also 
divides some number B = 10a + b. From this we 
have concluded that m will also divide the combina-
tion a m nb. Could this combination be our divis-
ibility test?

The answer is yes. Use the Two out of Three 
theorem and equations (2) to show that if A and C 
are divisible by m, then B must be, also.

This leads to a divisibility test for factors of 
numbers of the form 10n + 1 or 10n – 1.

Let a number m (sharing no factor with 10) be 
such that m|(10n ± 1) for some integer n. Take any 
number and perform the following transformation 
on it:

Multiply the last digit by mn and add to the 
rest of the number (i.e., the number formed by 
dropping the last digit).

Then the result is divisible by m if and only if 
the original number is divisible by m.

(Question for the reader: Why do we need the 
restriction that m cannot share a factor with 10?)

This proves the following two claims from Gold-
enberg’s paper. Goldenberg uses the notation un to 
mean the units digit of the number n we are testing, 
and rn to mean the “rest” of the number, that is, the 
part that remains after the units digit is stripped 
off. Goldenberg also introduces the integer k (when 
it exists) by the condition that kun = rn. In our nota-
tion, a = rn and b = un.

Claim: 7|n if and only if 7|(rn – 2un).
Claim: m|n if and only if m|(rn – kun).

Now, note that nowhere in our proof of the divis-
ibility test did we assume that b was restricted to 
just one digit, although the divisibility tests where 
you use only one digit are easier to implement. So 
we have also proved the following (implied) claim 

from Goldenberg, where t means the last two digits 
of the number and h means the rest:

�Claim: This also works if you use h, t instead of 
r, u.

Let’s return to our first example, divisibility by 
41. Since 41 is a number of the form 10n + 1, with  
n = 4, the divisibility test will be a – 4b. This explains 
why at each step of the test we multiply the last digit 
by 4 and subtract it from the rest of the number.

We now also understand how to construct table 
1, which shows some of the divisibility tests for 
various values of p. Take p = 13, for example. Since 
3 • 13 = 39 = 4 • 10 – 1, one divisibility test for 13 is 
a + 4b. Since 7 • 13 = 91 = 9 • 10 + 1, another test is 
a – 9b. The “4” and the “9” come from the multiple 
of 10 that a multiple of 13 is closest to. The “+” and 
“–” come from whether the multiple of 13 is one less 
than that multiple of 10 (“+”) or one more (“–”).

Again, note that p does not have to be prime 
for these divisibility tests to work. Nowhere in the 
Two out of Three theorem or the proof of the divis-
ibility rules did we require that m was prime. As an 
example, since 3 • 3 = 9 • 1 = 1 • 10 – 1, the divisibil-
ity rule for 3, that is, “add the last digit to the rest 
of the number,” also works for 9.

DIVISIBILITY TESTS FOR  
MULTIPLE NUMBERS
We constructed a divisibility rule for 13 above, us-
ing 3 • 13 = 39 = 4 • 10 – 1 to get the test a + 4b. Re-
writing this as 13 • 3 = 39 = 4 • 10 – 1, we see that 
the test a + 4b also is a test for divisibility by 3. This 
is an unexpected bonus.

For example, since 3 • 7 = 21 = 2 • 10 + 1, the 
same test can be made to work for p = 3 and p = 
7. This divisibility test for 3 or 7 is “multiply the 
last digit by 2 and subtract from the rest of the 
number.”

Let’s test 111111 for divisibility by 3 and by 7. 
Apply the test recursively, as follows:

	 111111 = 11111 • 10 + 1
	 11111 – 1 • 2 = 11109 = 1110 • 10 + 9
	 1110 – 9 • 2 = 1092 = 109 • 10 + 2
	 109 – 2 • 2 = 105 = 10 • 10 + 5
	 10 – 5 • 2 = 0

Since the result, 0, is divisible by both 3 and 7, the 
original number is, too. In fact, 111111 = 3 • 7 • 5291.

The usefulness of this test is that it works in-
dependently for 3 and 7, so you are checking two 
numbers at once. [The editors pose this question 
to the reader: In this case, Olsen correctly sees the 
success of the test as showing that the number is 
divisible both by 7 and by 3. But clearly, not every 
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number that passes the divisibility-by-7 test is also 
divisible by 3. What distinguishes when the process 
tests for divisibility by 3, by 7, or by both?]

You can easily construct other such tests. For 
example:

�The test “a – 9b” checks both 7 and 13, as we 
saw above, since 7 • 13 = 91:

 	 111111 = 11111 • 10 + 1
 	 11111 – 1 • 9 = 11102 = 1110 • 10 + 2
 	 1110 – 2 • 9 = 1092 = 109 • 10 + 2
 	 109 – 2 • 9 = 91 = 9 • 10 + 1
 	 9 – 1 • 9 = 0 

Other examples are “a + 4b” for 3 and 13, and  
“a – 5b” for 3 and 17.

A useful classroom application of the (3, 7) test 
is the Sieve of Eratosthenes. With one test you can 
construct a list of prime numbers less than 121. If 
an odd number less than 121 does not end in a 5, 
then failing divisibility by both 3 and 7 means that 
it is a prime. [Why? Because any composite number 
less than 112 must have a prime less than 11 as a 
factor, and that leaves only 2, 3, 5, or 7 as possibil
ities. If 2 is a factor, the number is even; if 5 is a 
factor, the number must end in 5 or 0. Otherwise, 
the only possible factors are 3 or 7. . . unless the 
number itself is prime.—Eds.] For example, 31, 41, 
61, and 71 are prime, but 51, 81, and 91 are not, as 
the test shows.

 		  3 – 2 • 1 = 1
 		  4 – 2 • 1 = 2
 		  5 – 2 • 1 = 3
 		  6 – 2 • 1 = 4
 		  7 – 2 • 1 = 5
 		  8 – 2 • 1 = 6
 		  9 – 2 • 1 = 7

A complete calculation is shown in table 2.

Suppose n = 10a + b. First we calculate a – 2b. 
Then we cross out entries that are divisible by 3 or 
7. See table 2.

The remaining entries represent prime numbers: 
11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 
67, 71, 73, 79, 83, 89, 97 . . . Voilà!

One can also take these same divisibility tests, 
arrange them by multiples ending in 1 or 9, and 
then list their factors, as shown in table 3. This 
table shows, for example, that a divisibility test for 
7 or 13 is to multiply the last digit by 9 and subtract 
it from the rest of the number.

Incidentally, note that the test for 99 means that 
if a two-digit number is divisible by 3, then the 
number formed by reversing the digits is, too. This, 
of course, conforms to the more common test for 
divisibility by 3: Sum all the digits and test that sum 
for divisibility by 3. Clearly, reversing the order of 
the digits would not affect that sum.

This finishes our survey of divisibility tests of num-
bers with multiples ending with 1 or 9. More questions 
arise, however: What about numbers ending with 3 or 
7? Is there another set of tests that can be constructed 
explicitly for these numbers and their factors? The 
answer is yes, as we will see in the next section.

NUMBERS ENDING IN 3
Take a number like 13. One test for divisibility, 
above, is to multiply the units digit by 4 and add it 
to the rest of the number. It is tempting, though, 
to wonder if you could have a units test where you 
divide the units digit by 3 and subtract from the rest 
of the number. Let’s see how it might work.

         1|3	    Works . . .
	 – 1
	 0

         2|6	    Works . . .
	 – 2
	 0

Table 2
Application to the Sieve of Eratosthenes

a – 2b b = 1 b = 3 b = 7 b  = 9

a = 1 –1 –5 –13 –17

a = 2 0 –4 –12 –16

a = 3 1 –3 –11 –15

a = 4 2 –2 –10 –14

a = 5 3 –1 –9 –13

a = 6 4 0 –8 –12

a = 7 5 1 –7 –11

a = 8 6 2 –6 –10

a = 9 7 3 –5 –9
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         3|9	    We’re on a roll!
	 – 3
	   0

These work well, but what do we do with

         5|2?	   Ooops!

There are two ways to proceed here. First, to effect 
the division, we can borrow from the rest of the 
number. That is, 2 is not divisible by 3, but 12 is. 
So if we borrow one from the rest of the number,

         5|2	  = 4|12
		   – 4
		     0

This seems to work. Regardless of the units digit, 
you have to borrow at most 2 from the rest of the 
number to find a multiple of 3.

The second method is to multiply the rest of the 
number by 3 and subtract the units, instead of di-
viding the units by 3 and subtracting from the rest 
of the number:

         5|2
       15|2
	    – 2
	 13

Either of these is satisfactory; however, the first meth-
od will converge faster because on average you are 
removing slightly more than one digit per operation.

GENERAL DIVISIBILITY TEST  
FOR FACTORS OF NUMBERS OF  
THE FORM 10n + 3 or 10n – 3
Now let’s see if we can formalize this. If m divides 
10n ± 3, the goal is to find a linear combination of 10n 
± 3 and a general number 10a + b that will yield a di-
visibility test. In fact, if m is not a divisor of 10, then

	 A = (10a + b)
and	 B = (10n ± 3) →
	 C = 3A m B = 3(10a + b) m b(10n ± 3)
or	 C = 30a + 3b m 10nb – 3b = 10(3a m nb)
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Now, suppose that m|B and m|C. Then by the 
Two out of Three theorem, m|A. This forms the 
basis of the following divisibility test.

Let a number m, relatively prime to 10 and not 
divisible by 3, be a divisor of 10n ± 3. Take any 
number 10a + b and perform the following trans-
formation on it:

Borrow 0, 1, or 2 from a so that b, b + 10, or  
b + 20 respectively is evenly divisible by 3.

Multiply the modified value of b by
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and add to the rest of the number (i.e., a, the 
number formed by taking off the last digit).

Then the result is divisible by m if and only if 
the original number is divisible by m.

Examples of these tests are shown in table 1 
and summarized in table 4.

As an example, let’s prove that the repeat length 
of 1/13 is 6. As demonstrated in the first part of the 
article, this comes down to showing that 111111 
is divisible by 13. We use the test given in table 4, 
which is (–1/3).

         11111|1	 Starting number
         11109|21	 Borrow 2
              – 7	 1/3 of 21 is 7; subtract it
         1110|2	 Second number
         1109|12	 Borrow 1
            – 4	 1/3 of 12 is 4; subtract it
         110|5	 Third number

Table 3
Divisibility Tests for Numbers  
Ending in 1 or 9

n Test for k

9 3, 9 + 1

11 11 – 1

19 19 + 2

21 3, 7, 21 – 2

29 29 + 3

31 31 – 3

39 3, 13, 39 + 4

41 41 – 4

49 7, 49 + 5

51 3, 17, 51 – 5

59 59 + 6

61 61 – 6

69 3, 23, 69 + 7

71 71 – 7

79 79 + 8

81 3, 9, 27, 81 – 8

89 89 + 9

91 7, 13, 91 – 9

99 3, 9, 11, 99 + 10
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             109|15	 Borrow 1
             – 5	 1/3 of 15 is 5; subtract it
             10|4	 Fourth number
               8|24	 Borrow 2
            – 8	 1/3 of 24 is 8; subtract it
               0	� 0, 104, 1105, 11102, and 

111111 are all divisible by 13

We could have used any test, for example, (+ 4) 
from table 1:

         11111|1	 Starting number
              + 4	 Multiply by 4, add
         1111|5
          + 20	 5 times 4 is 20
         113|1
          + 4	 1 times 4 is 4
         11|7
      + 28	 7 times 4 is 28
         39	 Yes, 111111 is divisible by 13.

APPLICATIONS
This completes my survey of divisibility tests. I want 
to close by briefly mentioning some applications.

 The first application, mentioned above, is in 
middle school classrooms, where students learn 
about the Sieve of Eratosthenes. The single divis-
ibility test for 3 and 7 can be used quickly to find 
all the primes less than 121.

A second application is factoring of numbers and 
polynomials. Factoring polynomials starts by factor-
ing the constant term. For example, to factor x2 –  
6x – 1591, you would start by factoring 1591. My 
algebra students have found divisibility tests useful 
in quickly ruling out certain combinations. Here you 
are looking for two numbers close to 40 = 51600 that 
divide 1591. Try 41. Table 1 says to apply “– 4”:

    159|1
     – 4
      15|5
   – 20
     – 5	 Not divisible by 41

Try 43:

    159|1	 Use the (–4/3) test from table 4
    157|21	 Borrow 2
   – 28	 4/3 times 21 is 28
      12|9		
   – 12	 4/3 times 9 is 12
        0	 1591 is divisible by 43

The other factor is 37, which you can find by 
division or by

    159|1	 Use the (+4/3) test from table 4
    157|21	 Borrow 2
   + 28	 4/3 times 21 is 28
      18|5
      17|15	 Borrow 1
   + 20
      37	 1591 is divisible by 37

I have found that once students master these 
tests, they can apply them faster than using a 
calculator to divide the number they are trying to 
factor.

What is interesting about these methods, from 
a mathematical perspective, is that they transform 
a very hard problem (factoring) to a much easier 
one by reducing the size of the number that needs 
factoring. Factoring algorithms form the computa-
tional basis of much of the data encryption stan-
dards used by the financial community to safeguard 
commercial transactions. Is it too much to hope 
that these methods could be applied to factoring 
very large numbers (thousands of digits) to improve 
the performance of these algorithms?

ACKNOWLEDGMENTS
Thanks to Paul Goldenberg, whose seminar  
appearance and subsequent article formed the  
stimulus for me to write down these thoughts. 
Many thanks also to the Lawrence High School 
Focus on Mathematics, an NSF-funded Math- 
Science Partnership centered at Boston Univer-
sity, which sponsors the study group at Lawrence 
High. Members of the study group have been the 
source of many interesting discussions on these 
and related topics, providing a nurturing, support-
ive environment where these nascent ideas could 
take form. Special thanks to Carol Rosen, Sue  
Gerber, and Joe Bishop of the study group for  
extra conversations.

Table 4
Testing Numbers Ending in 3 or 7

p k
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37 + 4/3

43 – 4/3
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53 – 5/3

67 + 7/3

73 – 7/3

83 – 8/3

97 + 10/3
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Editors’ notes: Allen Olsen picks up the theme from 
Goldenberg’s article and shows how to develop divis-
ibility tests for any integer that has a multiple of the 
form 10n ± 1 or 10n ± 3. It turns out that every integer 
that is not divisible by 2 or 5 satisfies all four of these 
conditions. The reason comes from number theory: If 
m is an integer relatively prime to 10, then the greatest 
common divisor for m and 10 is 1. It follows from a fa-
mous theorem that appears in Euclid that one can find 
an integer n so that 10n leaves a remainder of 1 when 
divided by m (n is called the inverse of 10 modulo m). 

From here, you can find 
multiples of 10 that leave 
remainders of –1, 3, and –3 
when divided by m. So there 
are several tests for all such 
integers m.

We have seen other 
examples of applications of 
Euclid’s result and number 
theory in “Delving Deep-
er,” such as “Reducing the 
Sum of Two Fractions,” 
by Harris S. Shultz and 
Ray C. Shiflett, Mathemat-
ics Teacher 98 (March 
2005): 486–90. We would 
welcome other articles 

that explore this beautiful part of mathematics. For 
example, readers may have used the “post office” 
problem in their classes (“If the post office has only 
5- and 8-cent stamps today, what denominations 
can they make?”). What mathematics can you mine 
from this problem?

As Olsen mentions, one topic closely related to this 
circle of ideas is the analysis of repeat lengths in the 
decimal expansions for rational numbers. This topic 
fascinates people of all ages (see the “Reader Reflec-
tion” by Walt Levisee in the March 1997 issue for an 
account of work done by a nine-year-old). A great 
deal of insight into this topic comes from a thoughtful 
analysis of long division. For example, here is the cal-
culation for the decimal expansion for 1/7:
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From here on it repeats, because the next step is 
to divide 7 into 1 again; so the period is 6. But an-
other way to look at this calculation (if you forget 
the decimal point) is that 106 leaves a remainder 
of 1 when divided by 7. This leads to more ques-
tions: For what integers m is there a power of 10 
that leaves a remainder of 1 when divided by m? 
And how can this help determine the length of the 
period for 1/m? Again, we would be happy to see 
articles that address these ideas.

As to the speculation that the approach pre-
sented here might find application in factoring large 
numbers, we are skeptical. For one thing, remov-
ing the units digit from a number is not easy in the 
multiprecision environment of most computers.

The Lawrence High School Study Group had 
another visitor on the day that Paul Goldenberg 
presented his results: Kurt Kreith from the Univer-
sity of California—Davis. Kreith raised an interest-
ing point: In the common divisibility test for 3, one 
computes the sum of the digits of a number and 
tests it for divisibility by 3. More is true: The num-
ber and the sum of its digits leave the same remain-
der when each is divided by 3. This is not true for, 
say, Olsen’s divisibility test for 7. All Olsen’s test 
guarantees is that if one remainder on division by 7 
is 0, so is the next one in the process. Can one say 
anything about the remainders in this situation? ∞

Allen OlseN, aleols@aol.com, 
teaches algebra, geometry, calculus, 
and physics at Lawrence High School, 
Lawrence, MA 01842.

One topic closely  
related to this circle 

of ideas is the  
analysis of repeat 

lengths in the  
decimal expansions 

for rational numbers


