
American Computer Science League

All-Star Contest
MORE PARITY

PROBLEM: If a binary number contains an even number of 1 bits, we say that it has
even parity. If the number contains an odd number of 1 bits, it has odd parity. When data
must be transmitted from one device to another, there is always the possibility that an
error might occur. Detection of a single incorrect bit in a data word can be detected
simply by adding an additional parity bit to the end of the word. If both the sender and
receiver agree to use even parity, for example, the sender can set the parity bit to either 1
or zero so as to make the total number of 1 bits in the word an even number:

The receiver of a transmission also counts the 1 bits in the received value, and if the
count is not even, an error condition is signaled and the sender is usually instructed to re-
send the data. In 1950, Richard Hamming developed an innovative way of adding bits to
a number in such a way that transmission errors involving no more than a single bit could
be detected and corrected. For data of size 2n bits, n+1 parity bits are embedded to form a
codeword. The parity bit positions are powers of 2: {1,2,4,8,16,32...}. All remaining
positions hold data bits. The 16-bit data value 1000111100110101 would be stored as the
21-bit codeword as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
P P 1 P 0 0 0 P 1 1 1 1 0 0 1 P 1 0 1 0 1

Parity Bit Rule
1 use 1, skip 1, use 1, skip 1, ...
2 use 2, skip 2, use 2, skip 2, ...
4 use 4, skip 4, use 4, ...
8 use 8, skip 8, use 8, ...

Now it's time to put all of this information together and create a codeword. For this
example we will use even parity and the 8-bit data value 1 1 0 0 1 1 1 1, which will
produce a 12-bit codeword. Let's start by filling in the data bits:

1 2 3 4 5 6 7 8 9 10 11 12
P P 1 P 1 0 0 P 1 1 1 1

2004 - 2005 Program #8

8-bit data value: 1 0 1 1 0 1 0 1
added parity bit: 1
transmitted data: 1 0 1 1 0 1 0 1 1

8-bit data value: 1 0 1 1 0 1 0 0
added parity bit: 0
transmitted data: 1 0 1 1 0 1 0 0 0

The adjacent table gives the rules
for calculating the value of each
parity bit up to bit 8.



To calculate the parity bit in position 1, start with the parity bit location, which is initially
0, and sum the bits in positions 1, 3, 5, 7, 9, and 11: (0+1+1+0+1+1 = 4). This is done
by the rule: use 1, skip 1. The positions 1,3,5,7,9 and 11 are called the bit group for P1.
This sum is even so parity bit 1 should be assigned a value of 0.

1 2 3 4 5 6 7 8 9 10 11 12
0 P 1 P 1 0 0 P 1 1 1 1

To generate the parity bit in position 2, sum the bits in positions 2, 3, 6, 7, 10, and 11:
(0+1+0+0+1+1 = 3). This was done by the rule: use 2, skip 2. The sum is odd, so we
assign a value of 1 to parity bit 2. This produces even parity for the combined group of
bits 2, 3, 6, 7, 10, and 11:

1 2 3 4 5 6 7 8 9 10 11 12
0 1 1 P 1 0 0 P 1 1 1 1

When all parity bits have been created, the resulting codeword is: 011010001111.

When a codeword is received, the receiver must verify the correctness of the data. This is
accomplished by counting the 1 bits in each bit group (mentioned earlier) and verifying
that each has the agreed parity. Here are the bit groups for a 12-bit code value:

Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

If parity is even and one of these groups produces an odd numbered sum, the receiver
knows that a transmission error occurred. As long as only a single bit was altered, it can
be corrected. The method can be best shown using concrete examples.

Example 1: Suppose that the bit in position 4 was reversed, producing 011110001111.
The receiver would detect an odd parity in the bit group associated with parity bit 4.
Since the bit in position 4 appears in no other bit group, the receiver would toggle this bit,
thus correcting the transmission error.

Example 2: Suppose that bit 7 was reversed, producing 011010101111. The bit groups
based on parity bits 1, 2, and 4 would have odd parity. The only bit that is shared by all
three groups (the intersection of the three sets of bits) is bit 7, so again the error bit is
identified. See the chart below:



Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

Example 3: Suppose that bit 6 was reversed, producing 011011001111. The groups
based on parity bits 2 and 4 would have odd parity. Notice that two bits are shared by
these two groups (their intersection): 6 and 7. See the chart below:

Parity Bit Bit Group
1 1, 3, 5, 7, 9, 11
2 2, 3, 6, 7, 10, 11
4 4, 5, 6, 7, 12
8 8, 9, 10, 11, 12

But notice that the 7 occurs in group 1, which has even parity. This leaves bit 6 as the
only choice as the incorrect bit.

INPUT: There will be 10 lines of input. Each line will contain 2 strings. The first string
will be a hexadecimal value that needs to be converted to binary to form the codeword.
The maximum length of a codeword will be 132 bits. The second string will be either the
word ODD or EVEN. This second string gives the original parity of the transmitted
value.

OUTPUT: For each line of input, print the position of the parity error. ACSL
guarantees that there will be at most one error per input string. If there is no error, then
print the word NONE.

SAMPLE INPUT SAMPLE OUTPUT

1. E8F, EVEN 1. 1
2. 7222F, EVEN 2. 2
3. B9CD66, ODD 3. 4
4. 912, EVEN 4. 6


