3. Fortunate Numbers

PROBLEM: Let P be the product of the first $\mathrm{N}($ where $\mathrm{N}>1)$ prime numbers. Let Q equal the smallest prime number greater than $\mathrm{P}+1$. Mathematician Reo Fortune conjectured that $\mathrm{Q}-\mathrm{P}$ will always be a prime. For example, if $\mathrm{N}=3, \mathrm{P}=2 * 3 * 5=30$. $\mathrm{P}+1=31$. The smallest prime number greater than 31 gives $\mathrm{Q}=37$. $\mathrm{Q}-\mathrm{P}=7$. Numbers in the form $\mathrm{Q}-\mathrm{P}$ are called Fortunate numbers.

Another mathematician, Paul Carpenter conjectured that by letting Q be the greatest prime less than $\mathrm{P}-1$ that $\mathrm{P}-\mathrm{Q}$ will also be prime. These numbers are called Less-Fortunate numbers. For example if $\mathrm{N}=3, \mathrm{P}$ $=30$ and $\mathrm{Q}=23$. $\mathrm{P}-\mathrm{Q}=7$.

INPUT: There will be 10 input lines. Each line will consist of one positive integer value of N.
OUTPUT: For the first 5 inputs print the calculated Fortunate number. For the last five outputs print the calculated Less-Fortunate number.

SAMPLE INPUT

1. 2
2. 5
.
3. 2
4. 5

SAMPLE OUTPUT

1. 5
2. 23
3. 3
4. 13
